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Proposition 3.9

Proposition 3.9

Proposition 3.9. Let {fn} be a sequence of measurable functions on E
that converges pointwise a.e. on E to function f . Then f is measurable.

Proof. Let E0 ⊂ E for which m(E0) = 0 and {fn} converges to f
pointwise on E \ E0. By Proposition 3.5(i), f is measurable if and only if
its restriction to E \ E0 is measurable.

So, without loss of generality, we
assume pointwise convergence on all of E .

Let c ∈ R. For a given x ∈ E we have limn→∞ fn(x) = f (x) and so
f (x) < c if and only if there exists n, k ∈ N for which fj(x) < c − 1/n for
all j ≥ k. Since fj is measurable, then {x ∈ E | fj(x) < c − 1/n} is
measurable for all n, j ∈ N. So we have
∩∞j=k{x ∈ E | fj(x) < c − 1/n} ∈ M. Finally,
{x ∈ E | f (x) < c} = ∪∞k,n=1[∩∞j=k{x ∈ E | fj(x) < c − 1/n}] is
measurable and f is measurable.
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The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.
Let f be measurable and real valued on set E . Assume f is bounded on E
(i.e., |f | ≤ M on E for some M). Then for each ε > 0, there are simple
functions ϕε and ψε for which

ϕε ≤ f ≤ ψε and 0 ≤ ψε − ϕε < ε on E .

(That is, these inequalities hold pointwise for each x ∈ E .)

Proof. Let (c , d) be an open bounded interval that contains f (E ) and
partition (c , d) as c = y0 < y1 < · · · < yn = d such that yk − yk−1 < ε for
each k.

Define Ik = [yk−1, yk) and Ek = f −1(Ik). Since f is measurable,
each Ek ∈M. Define ϕε =

∑n
k=1 yk−1χEk

and ψε =
∑n

k=1 ykχEk
. For

each x ∈ E , f (x) ∈ Ik for some k and so
ϕε(x) = yk−1 ≤ f (x) < yk = ψε(x). Since yk − yk−1 < ε, then it follows
that 0 < ψε(x)− ϕε(x) < yk − yk−1 (for all k) < ε.
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The Simple Approximation Theorem

The Simple Approximation Theorem

The Simple Approximation Theorem.
An extended real-valued function f on a measurable set E is measurable if
and only if there is a sequence {ϕn} of simple functions on E which
converges pointwise on E to f and has the property that |ϕn| ≤ |f | on E
for all n. If f is nonnegative, we may choose {ϕn} to be increasing.

Proof. First, suppose that the sequence {ϕn} of simple functions on E
exists as described. Each simple function is measurable (by definition of
“simple function”), so by Proposition 3.9 the pointwise limit of {ϕn} is
measurable. That is, f is measurable.

Second, suppose f is measurable. We also assume f ≥ 0 on E . The
general case will then follow by expressing f as the difference of
nonnegative measurable functions, as shown in Problem 3.23. Let n ∈ N.
Define En = {x ∈ E | f (x) ≤ n}. Then En is a measurable set (by
definition of “measurable function”) and the restriction of f to En is a
nonnegative bounded measurable function (measurable by Proposition
3.5(ii)).
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 1)

Proof (continued). By the Simple Approximation Lemma, applied to the
restriction of f to En and with ε = 1/n, we may select simple functions ϕn

and ψn defined on En which satisfy

0 ≤ ϕn ≤ f ≤ ψn on En and 0 ≤ ψn − ϕn < 1/n on En.

So 0 ≤ ϕn ≤ f and 0 ≤ f − ϕn ≤ ψn − ϕn < 1/n on En. Extend ϕn to all
of E by setting ϕn(x) = n if f (x) ≥ n. Then the extended ϕn is a simple
function defined on E and 0 ≤ ϕn ≤ f on E . We claim that the sequence
ϕn converges to f pointwise on E . Let x ∈ E .

Case 1. Suppose f (x) is finite. Choose N ∈ N for which f (x) < N. Then
0 ≤ f (x)− ϕn(x) < 1/n for n ≥ N. Therefore limn→∞ ϕn(x) = f (x).

Case 2. Suppose f (x) = ∞. Then ϕn(x) = n for all n so that
limn→∞ ϕn(x) = limn→∞ n = ∞ = f (x).
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.
An extended real-valued function f on a measurable set E is measurable if
and only if there is a sequence {ϕn} of simple functions on E which
converges pointwise on E to f and has the property that |ϕn| ≤ |f | on E
for all n. If f is nonnegative, we may choose {ϕn} to be increasing.

Proof (continued). If we now replace ϕn with max{ϕ1, ϕ2, . . . , ϕn}
(which is also simple by Problem 3.19) we have that the new sequence
{ϕn} is thus increasing and the new sequence is pointwise a subsequence
of the original sequence and so converges to f pointwise as well.
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