Real Analysis

Chapter 3. Lebesgue Measurable Functions

3.3. Littlewoods Three Principles, Egoroffs Theorem, and Lusins Theorem—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma 3.10
(2) Egoroff's Theorem
(3) Proposition 3.11
(4) Lusin's Theorem

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta>0$ and $\delta>0$, there is a measurable subset A of E and an index N for which

$$
\left|f_{n}-f\right|<\eta \text { on } A \text { for all } n \geq N \text { and } m(E \backslash A)<\delta
$$

Proof. For each k, the function $\left|f-f_{k}\right|$ is well-defined (since f is real-valued then we do not have $\infty-\infty$ concerns, even though f_{k} might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\left\{x \in E\left|\left|f(x)-f_{k}(x)\right|<\eta\right\}\right.$ is measurable for all $\eta \in \mathbb{R}$.

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta>0$ and $\delta>0$, there is a measurable subset A of E and an index N for which

$$
\left|f_{n}-f\right|<\eta \text { on } A \text { for all } n \geq N \text { and } m(E \backslash A)<\delta
$$

Proof. For each k, the function $\left|f-f_{k}\right|$ is well-defined (since f is real-valued then we do not have $\infty-\infty$ concerns, even though f_{k} might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\left\{x \in E\left|\left|f(x)-f_{k}(x)\right|<\eta\right\}\right.$ is measurable for all $\eta \in \mathbb{R}$. Now

$\left.\left|f(x)-f_{k}(x)\right|<\eta\right\}$ is measurable. Also, $\left\{E_{n}\right\}_{n=1}^{\infty}$ is an ascending
collection of measurable sets. Since $\left\{f_{n}\right\}$ converges pointwise to f on E then $E=\cup_{n=1}^{\infty} E_{n}=\lim E_{n}$.

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta>0$ and $\delta>0$, there is a measurable subset A of E and an index N for which

$$
\left|f_{n}-f\right|<\eta \text { on } A \text { for all } n \geq N \text { and } m(E \backslash A)<\delta
$$

Proof. For each k, the function $\left|f-f_{k}\right|$ is well-defined (since f is real-valued then we do not have $\infty-\infty$ concerns, even though f_{k} might be extended real valued) and measurable by Theorem 3.6 and Proposition 3.9. So $\left\{x \in E\left|\left|f(x)-f_{k}(x)\right|<\eta\right\}\right.$ is measurable for all $\eta \in \mathbb{R}$. Now $E_{n}=\left\{x \in E| | f(x)-f_{k}(x) \mid<\eta\right.$ for all $\left.k \geq n\right\}=\cap_{k=n}^{\infty}\{x \in E \mid$ $\left.\left|f(x)-f_{k}(x)\right|<\eta\right\}$ is measurable. Also, $\left\{E_{n}\right\}_{n=1}^{\infty}$ is an ascending collection of measurable sets. Since $\left\{f_{n}\right\}$ converges pointwise to f on E then $E=\cup_{n=1}^{\infty} E_{n}=\lim E_{n}$.

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta>0$ and $\delta>0$, there is a measurable subset A of E and an index N for which

$$
\left|f_{n}-f\right|<\eta \text { on } A \text { for all } n \geq N \text { and } m(E \backslash A)<\delta
$$

Proof (continued). By continuity of measure (Theorem 2.15) $m(E)=\lim m\left(E_{n}\right)$. Since $m(E)<\infty$, we may choose $N \in \mathbb{N}$ such that $m\left(E_{N}\right)>m(E)-\delta$. Define $A=E_{N}$. Then by the Excision Property, $m(E \backslash A)=m(E)-m(A)=m(E)-m\left(E_{N}\right)<\delta$.

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\eta>0$ and $\delta>0$, there is a measurable subset A of E and an index N for which

$$
\left|f_{n}-f\right|<\eta \text { on } A \text { for all } n \geq N \text { and } m(E \backslash A)<\delta
$$

Proof (continued). By continuity of measure (Theorem 2.15) $m(E)=\lim m\left(E_{n}\right)$. Since $m(E)<\infty$, we may choose $N \in \mathbb{N}$ such that $m\left(E_{N}\right)>m(E)-\delta$. Define $A=E_{N}$. Then by the Excision Property, $m(E \backslash A)=m(E)-m(A)=m(E)-m\left(E_{N}\right)<\delta$.

Egoroff's Theorem

Egoroff's Theorem. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon>0$, there is a closed set F contained in E for which

$$
\left\{f_{n}\right\} \rightarrow f \text { uniformly on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Let $\delta=\varepsilon / 2^{n+1}$ and $\eta=1 / n$.

Egoroff's Theorem

Egoroff's Theorem. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon>0$, there is a closed set F contained in E for which

$$
\left\{f_{n}\right\} \rightarrow f \text { uniformly on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Let $\delta=\varepsilon / 2^{n+1}$ and $\eta=1 / n$. Then by
Lemma 3.10 (this is where finite measure is used) there exists measurable $A_{n} \subset E$ and $N(n) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<\eta=1 / n$ on A_{n} for all $k \geq N(n)$ and $m\left(E \backslash A_{n}\right)<\delta=\varepsilon / 2^{n+1}$. Define $A=\cap_{n=1}^{\infty} A_{n}$.

Egoroff's Theorem

Egoroff's Theorem. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon>0$, there is a closed set F contained in E for which

$$
\left\{f_{n}\right\} \rightarrow f \text { uniformly on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Let $\delta=\varepsilon / 2^{n+1}$ and $\eta=1 / n$. Then by Lemma 3.10 (this is where finite measure is used) there exists measurable $A_{n} \subset E$ and $N(n) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<\eta=1 / n$ on A_{n} for all $k \geq N(n)$ and $m\left(E \backslash A_{n}\right)<\delta=\varepsilon / 2^{n+1}$. Define $A=\cap_{n=1}^{\infty} A_{n}$. Then

Egoroff's Theorem

Egoroff's Theorem. Assume E has finite measure. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon>0$, there is a closed set F contained in E for which

$$
\left\{f_{n}\right\} \rightarrow f \text { uniformly on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $\varepsilon>0$ and $n \in \mathbb{N}$. Let $\delta=\varepsilon / 2^{n+1}$ and $\eta=1 / n$. Then by Lemma 3.10 (this is where finite measure is used) there exists measurable $A_{n} \subset E$ and $N(n) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<\eta=1 / n$ on A_{n} for all $k \geq N(n)$ and $m\left(E \backslash A_{n}\right)<\delta=\varepsilon / 2^{n+1}$. Define $A=\cap_{n=1}^{\infty} A_{n}$. Then

$$
\begin{aligned}
m(E \backslash A) & =m\left(E \backslash\left(\cap_{n=1}^{\infty} A_{n}\right)\right) \\
& =m\left(\cup_{n=1}^{\infty}\left(E \backslash A_{n}\right)\right) \text { by DeMorgan's Laws } \\
& \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right) \text { by countable subadditivity }
\end{aligned}
$$

Egoroff's Theorem

Proof (continued).

$$
m(E \backslash A) \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

We now show that $\left\{f_{n}\right\} \rightarrow f$ uniformly on A. Let $\varepsilon>0$ and choose n_{0} such that $1 / n_{0}<\varepsilon$.

Egoroff's Theorem

Proof (continued).

$$
m(E \backslash A) \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

We now show that $\left\{f_{n}\right\} \rightarrow f$ uniformly on A. Let $\varepsilon>0$ and choose n_{0} such that $1 / n_{0}<\varepsilon$. Then from above there is $N\left(n_{0}\right) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<1 / n_{0}$ on $A_{n_{0}}$ for $k \geq N\left(n_{0}\right)$. Since $A \subset A_{n_{0}}$ and $1 / n_{0}<\varepsilon$ then the previous observation implies $\left|f_{k}-f\right|<\varepsilon$ on A for $k \geq N\left(n_{0}\right)$. So $\left\{f_{n}\right\}$ converges to f uniformly on A and $m(E \backslash A)<\varepsilon / 2$.

Egoroff's Theorem

Proof (continued).

$$
m(E \backslash A) \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

We now show that $\left\{f_{n}\right\} \rightarrow f$ uniformly on A. Let $\varepsilon>0$ and choose n_{0} such that $1 / n_{0}<\varepsilon$. Then from above there is $N\left(n_{0}\right) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<1 / n_{0}$ on $A_{n_{0}}$ for $k \geq N\left(n_{0}\right)$. Since $A \subset A_{n_{0}}$ and $1 / n_{0}<\varepsilon$ then the previous observation implies $\left|f_{k}-f\right|<\varepsilon$ on A for $k \geq N\left(n_{0}\right)$. So $\left\{f_{n}\right\}$ converges to f uniformly on A and $m(E \backslash A)<\varepsilon / 2$.
Now we need to find the desired closed set. By Theorem 2.11 there is a closed set F contained in A for which $m(A \backslash F)<\varepsilon / 2$.

Egoroff's Theorem

Proof (continued).

$$
m(E \backslash A) \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

We now show that $\left\{f_{n}\right\} \rightarrow f$ uniformly on A. Let $\varepsilon>0$ and choose n_{0} such that $1 / n_{0}<\varepsilon$. Then from above there is $N\left(n_{0}\right) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<1 / n_{0}$ on $A_{n_{0}}$ for $k \geq N\left(n_{0}\right)$. Since $A \subset A_{n_{0}}$ and $1 / n_{0}<\varepsilon$ then the previous observation implies $\left|f_{k}-f\right|<\varepsilon$ on A for $k \geq N\left(n_{0}\right)$. So $\left\{f_{n}\right\}$ converges to f uniformly on A and $m(E \backslash A)<\varepsilon / 2$.
Now we need to find the desired closed set. By Theorem 2.11 there is a closed set F contained in A for which $m(A \backslash F)<\varepsilon / 2$. So
$E \backslash F=(E \backslash A) \cup(A \backslash F)$ and
$m(E \backslash F)=m(E \backslash A)+m(A \backslash F)<\varepsilon / 2+\varepsilon / 2=\varepsilon$. Since $F \subset A$, then

Egoroff's Theorem

Proof (continued).

$$
m(E \backslash A) \leq \sum_{n=1}^{\infty} m\left(E \backslash A_{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

We now show that $\left\{f_{n}\right\} \rightarrow f$ uniformly on A. Let $\varepsilon>0$ and choose n_{0} such that $1 / n_{0}<\varepsilon$. Then from above there is $N\left(n_{0}\right) \in \mathbb{N}$ such that $\left|f_{k}-f\right|<1 / n_{0}$ on $A_{n_{0}}$ for $k \geq N\left(n_{0}\right)$. Since $A \subset A_{n_{0}}$ and $1 / n_{0}<\varepsilon$ then the previous observation implies $\left|f_{k}-f\right|<\varepsilon$ on A for $k \geq N\left(n_{0}\right)$. So $\left\{f_{n}\right\}$ converges to f uniformly on A and $m(E \backslash A)<\varepsilon / 2$.
Now we need to find the desired closed set. By Theorem 2.11 there is a closed set F contained in A for which $m(A \backslash F)<\varepsilon / 2$. So
$E \backslash F=(E \backslash A) \cup(A \backslash F)$ and $m(E \backslash F)=m(E \backslash A)+m(A \backslash F)<\varepsilon / 2+\varepsilon / 2=\varepsilon$. Since $F \subset A$, then $\left\{f_{n}\right\}$ converges uniformly on F.

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the finite number of distinct values taken by f and let the values be taken on the sets $E_{1}, E_{2}, \ldots, E_{n}$ respectively. Since the a_{k} 's are distinct then the E_{k} 's are disjoint.

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the finite number of distinct values taken by f and let the values be taken on the sets $E_{1}, E_{2}, \ldots, E_{n}$ respectively. Since the a_{k} 's are distinct then the E_{k} 's are disjoint. By Theorem 2.11 there are closed sets $F_{1}, F_{2}, \ldots, F_{n}$ such that for each $k, F_{k} \subset E_{k}$ and $m\left(E_{k} \backslash F_{k}\right)<\varepsilon / n$. Then $F=\cup_{k=1}^{n} F_{k}$ is closed.

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the finite number of distinct values taken by f and let the values be taken on the sets $E_{1}, E_{2}, \ldots, E_{n}$ respectively. Since the a_{k} 's are distinct then the E_{k} 's are disjoint. By Theorem 2.11 there are closed sets $F_{1}, F_{2}, \ldots, F_{n}$ such that for each $k, F_{k} \subset E_{k}$ and $m\left(E_{k} \backslash F_{k}\right)<\varepsilon / n$. Then $F=\cup_{k=1}^{n} F_{k}$ is closed. Since the E_{k} are disjoint, we have by countable additivity
$m(E \backslash F)=m\left(\left(\cup_{k=1}^{n} E_{k}\right) \backslash\left(\cup_{k=1}^{n} F_{k}\right)\right)=m\left(\cup_{k=1}^{n}\left(E_{k} \backslash F_{k}\right)\right)$

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. Let $a_{1}, a_{2}, \ldots, a_{n}$ be the finite number of distinct values taken by f and let the values be taken on the sets $E_{1}, E_{2}, \ldots, E_{n}$ respectively. Since the a_{k} 's are distinct then the E_{k} 's are disjoint. By Theorem 2.11 there are closed sets $F_{1}, F_{2}, \ldots, F_{n}$ such that for each $k, F_{k} \subset E_{k}$ and $m\left(E_{k} \backslash F_{k}\right)<\varepsilon / n$. Then $F=\cup_{k=1}^{n} F_{k}$ is closed. Since the E_{k} are disjoint, we have by countable additivity

$$
\begin{gathered}
m(E \backslash F)=m\left(\left(\vdash_{k=1}^{n} E_{k}\right) \backslash\left(\cup_{k=1}^{n} F_{k}\right)\right)=m\left(\cup_{k=1}^{n}\left(E_{k} \backslash F_{k}\right)\right) \\
=\sum_{k=1}^{n} m\left(E_{k} \backslash F_{k}\right)<\sum_{k=1}^{n} \frac{\varepsilon}{n}=\varepsilon
\end{gathered}
$$

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon
$$

Proof (continued). Define g on F as $g(x)=a_{k}$ for $x \in F_{k}$. (The F_{k} 's are disjoint, so g is well-defined.) Since the F_{k} 's are closed, g is continuous on F (for $x \in F_{k}$, there is an open interval containing x which is disjoint from the other F_{k} 's, so g is constant on this open interval intersecting F).

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon
$$

Proof (continued). Define g on F as $g(x)=a_{k}$ for $x \in F_{k}$. (The F_{k} 's are disjoint, so g is well-defined.) Since the F_{k} 's are closed, g is continuous on F (for $x \in F_{k}$, there is an open interval containing x which is disjoint from the other F_{k} 's, so g is constant on this open interval intersecting F). By Problem 3.25, g can be extended to a function continuous on all of \mathbb{R}. This extension of g is the desired function.

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon
$$

Proof (continued). Define g on F as $g(x)=a_{k}$ for $x \in F_{k}$. (The F_{k} 's are disjoint, so g is well-defined.) Since the F_{k} 's are closed, g is continuous on F (for $x \in F_{k}$, there is an open interval containing x which is disjoint from the other F_{k} 's, so g is constant on this open interval intersecting F). By Problem 3.25, g can be extended to a function continuous on all of \mathbb{R}. This extension of g is the desired function.

Lusin's Theorem

Lusin's Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. The case $m(E)=\infty$ is Problem 3.29, so we consider $m(E)<\infty$.

Lusin's Theorem

Lusin's Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. The case $m(E)=\infty$ is Problem 3.29, so we consider $m(E)<\infty$. By the Simple Approximation Theorem, there is a sequence $\left\{f_{n}\right\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$.

Lusin's Theorem

Lusin's Theorem. Let f be a real-valued measurable function on E. Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. The case $m(E)=\infty$ is Problem 3.29, so we consider $m(E)<\infty$. By the Simple Approximation Theorem, there is a sequence $\left\{f_{n}\right\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$. By Proposition 3.11 , with f replaced by f_{n} and ε replaced by $\varepsilon / 2^{n+1}$, there is a continuous g_{n} defined on \mathbb{R} and a closed set F_{n} contained in E for which $f_{n}=g_{n}$ on F_{n} and $m\left(E \backslash F_{n}\right)<\varepsilon / 2^{n+1}$

Lusin's Theorem

Lusin's Theorem. Let f be a real-valued measurable function on E.
Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. The case $m(E)=\infty$ is Problem 3.29, so we consider $m(E)<\infty$. By the Simple Approximation Theorem, there is a sequence $\left\{f_{n}\right\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$. By Proposition 3.11, with f replaced by f_{n} and ε replaced by $\varepsilon / 2^{n+1}$, there is a continuous g_{n} defined on \mathbb{R} and a closed set F_{n} contained in E for which $f_{n}=g_{n}$ on F_{n} and $m\left(E \backslash F_{n}\right)<\varepsilon / 2^{n+1}$. By Egoroff's Theorem (this is where finite measure is used), there is a closed set F_{0} contained in E such that $\left\{f_{n}\right\}$ converges to f uniformly on F_{0} and $m\left(E \backslash F_{0}\right)<\varepsilon / 2$. Define $F=\cap_{n=0}^{\infty} F_{n}$.

Lusin's Theorem

Lusin's Theorem. Let f be a real-valued measurable function on E.
Then for each $\varepsilon>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which

$$
f=g \text { on } F \text { and } m(E \backslash F)<\varepsilon .
$$

Proof. The case $m(E)=\infty$ is Problem 3.29, so we consider $m(E)<\infty$. By the Simple Approximation Theorem, there is a sequence $\left\{f_{n}\right\}$ of simple functions defined on E that converges to f pointwise on E. Let $n \in \mathbb{N}$. By Proposition 3.11, with f replaced by f_{n} and ε replaced by $\varepsilon / 2^{n+1}$, there is a continuous g_{n} defined on \mathbb{R} and a closed set F_{n} contained in E for which $f_{n}=g_{n}$ on F_{n} and $m\left(E \backslash F_{n}\right)<\varepsilon / 2^{n+1}$. By Egoroff's Theorem (this is where finite measure is used), there is a closed set F_{0} contained in E such that $\left\{f_{n}\right\}$ converges to f uniformly on F_{0} and $m\left(E \backslash F_{0}\right)<\varepsilon / 2$. Define $F=\cap_{n=0}^{\infty} F_{n}$.

Lusin's Theorem

Proof (continued). Then

$$
\begin{gathered}
m(E \backslash F)=m\left(E \backslash \cap_{n=0}^{\infty} F_{n}\right)=m\left(\cup_{n=0}^{\infty}\left(E \backslash F_{n}\right)\right)=m\left(\left(E \backslash F_{0}\right) \cup\left(\cup_{n=1}^{\infty}\left(E \backslash F_{n}\right)\right)\right) \\
<\frac{\varepsilon}{2}+\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{gathered}
$$

The set F is closed (since it's the intersection of closed sets F_{n}). Each f_{n} is continuous on F since $F \subset F_{n}$ and $f_{n}=g_{n}$ on F_{n} and g_{n} is continuous on \mathbb{R}. Finally, $\left\{f_{n}\right\}$ converges to f uniformly on F since $F \subset F_{0}$ and $\left\{f_{n}\right\}$ converges uniformly to f on F_{0} (that's how F_{0} was chosen).

Lusin's Theorem

Proof (continued). Then

$$
\begin{aligned}
m(E \backslash F)=m\left(E \backslash \cap_{n=0}^{\infty} F_{n}\right) & =m\left(\cup_{n=0}^{\infty}\left(E \backslash F_{n}\right)\right)=m\left(\left(E \backslash F_{0}\right) \cup\left(\cup_{n=1}^{\infty}\left(E \backslash F_{n}\right)\right)\right) \\
< & \frac{\varepsilon}{2}+\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

The set F is closed (since it's the intersection of closed sets F_{n}). Each f_{n} is continuous on F since $F \subset F_{n}$ and $f_{n}=g_{n}$ on F_{n} and g_{n} is continuous on \mathbb{R}. Finally, $\left\{f_{n}\right\}$ converges to f uniformly on F since $F \subset F_{0}$ and $\left\{f_{n}\right\}$ converges uniformly to f on F_{0} (that's how F_{0} was chosen). However, the uniform limit of continuous functions is continuous, so the restriction of f to set F is continuous. By Problem 3.25, there is a continuous function g defined on all of \mathbb{R} such that $g=f$ on F. Function g is the desired function.

Lusin's Theorem

Proof (continued). Then

$$
\begin{aligned}
& m(E \backslash F)=m\left(E \backslash \cap_{n=0}^{\infty} F_{n}\right)=m\left(\cup_{n=0}^{\infty}\left(E \backslash F_{n}\right)\right)=m\left(\left(E \backslash F_{0}\right) \cup\left(\cup_{n=1}^{\infty}\left(E \backslash F_{n}\right)\right)\right) \\
&< \frac{\varepsilon}{2}+\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

The set F is closed (since it's the intersection of closed sets F_{n}). Each f_{n} is continuous on F since $F \subset F_{n}$ and $f_{n}=g_{n}$ on F_{n} and g_{n} is continuous on \mathbb{R}. Finally, $\left\{f_{n}\right\}$ converges to f uniformly on F since $F \subset F_{0}$ and $\left\{f_{n}\right\}$ converges uniformly to f on F_{0} (that's how F_{0} was chosen). However, the uniform limit of continuous functions is continuous, so the restriction of f to set F is continuous. By Problem 3.25, there is a continuous function g defined on all of \mathbb{R} such that $g=f$ on F. Function g is the desired function.

