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Lemma 3.10

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {f,} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f. Then for each 7 > 0 and § > 0, there is a
measurable subset A of E and an index N for which

|fa — fl <non Aforall n>Nand m(E\ A) <.
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Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {f,} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f. Then for each 7 > 0 and § > 0, there is a
measurable subset A of E and an index N for which

|fo — f| <mnon Aforall n> N and m(E\ A) <.
Proof. For each k, the function |f — fi| is well-defined (since f is
real-valued then we do not have co — oo concerns, even though f; might

be extended real valued) and measurable by Theorem 3.6 and Proposition
3.9. So {x € E | |f(x) — fx(x)| < n} is measurable for all n € R.
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Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {f,} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f. Then for each 7 > 0 and § > 0, there is a
measurable subset A of E and an index N for which

|fa — fl <non Aforall n>Nand m(E\ A) <.

Proof. For each k, the function |f — fi| is well-defined (since f is
real-valued then we do not have co — oo concerns, even though f; might
be extended real valued) and measurable by Theorem 3.6 and Proposition
3.9. So {x € E | |f(x) — fx(x)| < n} is measurable for all n € R. Now
E,={xe€ E||f(x)—fi(x)| <nforall k>n} = {x€E|

|f(x) — fu(x)| < n} is measurable. Also, {E,}5° ; is an ascending
collection of measurable sets. Since {f,} converges pointwise to f on E
then E = U2 E, = lim E,,.
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Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {f,} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f. Then for each n > 0 and § > 0, there is a
measurable subset A of E and an index N for which

|fa — fl <non Aforall n> N and m(E \ A) < 0.

Proof (continued). By continuity of measure (Theorem 2.15)
m(E) = limm(E,).
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Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {f,} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f. Then for each n > 0 and § > 0, there is a
measurable subset A of E and an index N for which

|fa — fl <non Aforall n> N and m(E \ A) < 0.

Proof (continued). By continuity of measure (Theorem 2.15)

m(E) = limm(E,). Since m(E) < oo, we may choose N € N such that
m(En) > m(E) — . Define A= Ey. Then by the Excision Property,
m(E\ A) = m(E) — m(A) = m(E) — m(En) < 0. O
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Egoroff’s Theorem
Egoroff’s Theorem. Assume E has finite measure. Let {f,} be a

sequence of measurable functions on E that converges pointwise on E to

the real-valued function f. Then for each € > 0, there is a closed set F
contained in E for which

{fa} — f uniformly on F and m(E \ F) <e.
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Egoroff's Theorem

Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let {f,} be a
sequence of measurable functions on E that converges pointwise on E to

the real-valued function f. Then for each € > 0, there is a closed set F
contained in E for which

{fa} — f uniformly on F and m(E \ F) <e.

Proof. Let ¢ >0and n€ N. Let § =¢/2""! and n = 1/n.
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Egoroff's Theorem

Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let {f,} be a
sequence of measurable functions on E that converges pointwise on E to

the real-valued function f. Then for each € > 0, there is a closed set F
contained in E for which

{fa} — f uniformly on F and m(E \ F) < .
Proof. Let ¢ >0 and n € N. Let § = ¢/2""! and = 1/n. Then by
Lemma 3.10 (this is where finite measure is used) there exists measurable

An C E and N(n) € N such that |[fy — f| <np=1/non A, for all
k > N(n) and m(E\ A,) < 6 =¢/2"1. Define A= N> A,
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Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let {f,} be a
sequence of measurable functions on E that converges pointwise on E to
the real-valued function f. Then for each € > 0, there is a closed set F
contained in E for which

{fa} — f uniformly on F and m(E \ F) < .

Proof. Let ¢ >0 and n € N. Let § = ¢/2""! and = 1/n. Then by
Lemma 3.10 (this is where finite measure is used) there exists measurable
An C E and N(n) € N such that |y — f| <n=1/non A, for all
k > N(n) and m(E\ A,) < 6 = ¢/2"1. Define A= A,. Then
m(E\A) = m(E\ (N;Z1A0))
= m(U;2,(E\ Ay)) by DeMorgan's Laws

o0

< Z m(E \ A,) by countable subadditivity

n=1
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Egoroff’s Theorem

Proof (continued).

m(E\NA) <Y m(E\ Ay) < Z% - %
n=1 n=1
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Egoroff's Theorem

Egoroff’s Theorem

Proof (continued).

m(E\NA) <Y m(E\ Ay) < Z% - %
n=1 n=1

We now show that {f,} — f uniformly on A. Let £ > 0 and choose ng
such that 1/ng < e.
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Egoroff’s Theorem

Proof (continued).

m(E\NA) <Y m(E\ Ay) < Z% - %
n=1 n=1

We now show that {f,} — f uniformly on A. Let £ > 0 and choose ng
such that 1/np < . Then from above there is N(ng) € N such that

|fx — f] < 1/ng on Ap, for k > N(ng). Since A C Ap, and 1/ng < € then
the previous observation implies |fx — f| < e on A for k > N(ng). So {f,}
converges to f uniformly on A and m(E \ A) < /2.
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Egoroff’s Theorem

Proof (continued).

m(E\NA) <Y m(E\ Ay) < Z% - %
n=1 n=1

We now show that {f,} — f uniformly on A. Let £ > 0 and choose ng
such that 1/np < . Then from above there is N(ng) € N such that

|fx — f] < 1/ng on Ap, for k > N(ng). Since A C Ap, and 1/ng < € then
the previous observation implies |fx — f| < e on A for k > N(ng). So {f,}
converges to f uniformly on A and m(E \ A) < /2.

Now we need to find the desired closed set. By Theorem 2.11 there is a
closed set F contained in A for which m(A\ F) < ¢/2.
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Egoroff’s Theorem

Proof (continued).

m(E\NA) <Y m(E\ Ay) < Z% - %
n=1 n=1

We now show that {f,} — f uniformly on A. Let £ > 0 and choose ng
such that 1/np < . Then from above there is N(ng) € N such that

|fx — f] < 1/ng on Ap, for k > N(ng). Since A C Ap, and 1/ng < € then
the previous observation implies |fx — f| < e on A for k > N(ng). So {f,}
converges to f uniformly on A and m(E \ A) < /2.

Now we need to find the desired closed set. By Theorem 2.11 there is a
closed set F contained in A for which m(A\ F) < e/2. So
E\F=(E\A)U(A\F) and

m(E\F)=m(E\A)+m(A\ F)<e/2+¢/2=c. Since F C A, then
{fa} converges uniformly on F. O
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Proposition 3.11

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for

each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.
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Proposition 3.11

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for

each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof. Let a1, as, ..., a, be the finite number of distinct values taken by f
and let the values be taken on the sets Eq, E», . .., E, respectively. Since
the ay's are distinct then the Ei's are disjoint.
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Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof. Let a1, as, ..., a, be the finite number of distinct values taken by f
and let the values be taken on the sets Eq, E», . .., E, respectively. Since
the aj’s are distinct then the Ex's are disjoint. By Theorem 2.11 there are
closed sets F1, Fp, ..., F, such that for each k, Fx C Ex and

m(Ex \ Fx) <e/n. Then F = U}_; Fy is closed.
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Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof. Let a1, as, ..., a, be the finite number of distinct values taken by f
and let the values be taken on the sets Eq, E», . .., E, respectively. Since
the aj’s are distinct then the Ex's are disjoint. By Theorem 2.11 there are
closed sets F1, Fp, ..., F, such that for each k, Fx C Ex and

m(Ex \ Fx) <e/n. Then F = U]_; F is closed. Since the Ej are disjoint,
we have by countable additivity

m(E\ F) = m((Ue=1 Ex) \ (Wi=1Fi)) = m(Ue1 (Ex \ Fi))

n n

m(Ek\Fk)<Z%:€.

k=1 k=1
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Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof (continued). Define g on F as g(x) = ax for x € Fx. (The Fy's
are disjoint, so g is well-defined.)
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Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof (continued). Define g on F as g(x) = ax for x € Fx. (The Fy's
are disjoint, so g is well-defined.) Since the Fy's are closed, g is
continuous on F (for x € Fy, there is an open interval containing x which
is disjoint from the other Fj's, so g is constant on this open interval
intersecting F).
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Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E. Then for
each € > 0, there is a continuous function g on R and a closed set F
contained in E for which

f=gonFand m(E\F)<e.

Proof (continued). Define g on F as g(x) = ax for x € Fx. (The Fy's
are disjoint, so g is well-defined.) Since the Fy's are closed, g is
continuous on F (for x € Fy, there is an open interval containing x which
is disjoint from the other Fj's, so g is constant on this open interval
intersecting F). By Problem 3.25, g can be extended to a function
continuous on all of R. This extension of g is the desired function. O
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Lusin’s Theorem

Lusin's Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E.

Then for each € > 0, there is a continuous function g on R and a closed
set F contained in E for which

f=gonFand m(E\F)<e.
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Lusin’s Theorem

Lusin's Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E.

Then for each € > 0, there is a continuous function g on R and a closed
set F contained in E for which

f=gonFand m(E\F)<e.

Proof. The case m(E) = oo is Problem 3.29, so we consider m(E) < oc.
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Lusin’s Theorem

Lusin's Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E.

Then for each € > 0, there is a continuous function g on R and a closed
set F contained in E for which

f=gonFand m(E\F)<e.

Proof. The case m(E) = oo is Problem 3.29, so we consider m(E) < oc.
By the Simple Approximation Theorem, there is a sequence {f,} of simple
functions defined on E that converges to f pointwise on E. Let n € N.
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Lusin’s Theorem

Lusin's Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E.
Then for each € > 0, there is a continuous function g on R and a closed
set F contained in E for which

f=gonFand m(E\F)<e.

Proof. The case m(E) = oo is Problem 3.29, so we consider m(E) < oc.

By the Simple Approximation Theorem, there is a sequence {f,} of simple
functions defined on E that converges to f pointwise on E. Let n € N. By
Proposition 3.11, with f replaced by f, and ¢ replaced by £/2"+1, there is

a continuous g, defined on R and a closed set F,, contained in E for which
fn = gnon F,and m(E\ F,) < e/2"1L.
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Lusin's Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E.
Then for each € > 0, there is a continuous function g on R and a closed
set F contained in E for which

f=gonFand m(E\F)<e.

Proof. The case m(E) = oo is Problem 3.29, so we consider m(E) < oc.
By the Simple Approximation Theorem, there is a sequence {f,} of simple
functions defined on E that converges to f pointwise on E. Let n € N. By
Proposition 3.11, with f replaced by f, and ¢ replaced by £/2"+1, there is
a continuous g, defined on R and a closed set F,, contained in E for which
fn = gn on F, and m(E \ F,) < /2", By Egoroff's Theorem (this is
where finite measure is used), there is a closed set Fy contained in E such
that {f,} converges to f uniformly on Fy and m(E \ Fy) < €/2. Define
F=n%oFn.
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Lusin's Theorem

Proof (continued). Then

m(E\F) = m(E\N:ZoFn) = m(UnZo(E\Fn)) = m((E\Fo)U(UnZi(E\Fn)))

g g
< = +22n+1:§ 528.
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Lusin's Theorem

Proof (continued). Then

m(E\F) = m(E\N:ZoFn) = m(UnZo(E\Fn)) = m((E\Fo)U(UnZi(E\Fn)))

e €
<3 +Zzn+1 =ty =¢
The set F is closed (since it's the intersection of closed sets F,). Each f,
is continuous on F since F C F,, and f, = g, on F, and g, is continuous

on R. Finally, {f,} converges to f uniformly on F since F C Fo and {f,}
converges uniformly to f on Fy (that's how Fy was chosen).
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Lusin's Theorem

Proof (continued). Then

m(E\F) = m(E\N:ZoFn) = m(UnZo(E\Fn)) = m((E\Fo)U(UnZi(E\Fn)))

g g
< = +22n+1:§ 528.

The set F is closed (since it's the intersection of closed sets F,). Each f,
is continuous on F since F C F,, and f, = g, on F, and g, is continuous
on R. Finally, {f,} converges to f uniformly on F since F C Fo and {f,}
converges uniformly to f on Fy (that's how Fy was chosen). However, the
uniform limit of continuous functions is continuous, so the restriction of f
to set F is continuous. By Problem 3.25, there is a continuous function g
defined on all of R such that g = f on F. Function g is the desired
function. O
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