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Lemma 3.10

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {fn} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f . Then for each η > 0 and δ > 0, there is a
measurable subset A of E and an index N for which

|fn − f | < η on A for all n ≥ N and m(E \ A) < δ.

Proof. For each k, the function |f − fk | is well-defined (since f is
real-valued then we do not have ∞−∞ concerns, even though fk might
be extended real valued) and measurable by Theorem 3.6 and Proposition
3.9. So {x ∈ E | |f (x)− fk(x)| < η} is measurable for all η ∈ R.

Now
En = {x ∈ E | |f (x)− fk(x)| < η for all k ≥ n} = ∩∞k=n{x ∈ E |
|f (x)− fk(x)| < η} is measurable. Also, {En}∞n=1 is an ascending
collection of measurable sets. Since {fn} converges pointwise to f on E
then E = ∪∞n=1En = lim En.
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Lemma 3.10

Lemma 3.10

Lemma 3.10. Assume E has finite measure. Let {fn} be a sequence of
measurable functions on E that converges pointwise on E to the
real-valued function f . Then for each η > 0 and δ > 0, there is a
measurable subset A of E and an index N for which

|fn − f | < η on A for all n ≥ N and m(E \ A) < δ.

Proof (continued). By continuity of measure (Theorem 2.15)
m(E ) = lim m(En). Since m(E ) < ∞, we may choose N ∈ N such that
m(EN) > m(E )− δ. Define A = EN . Then by the Excision Property,
m(E \ A) = m(E )−m(A) = m(E )−m(EN) < δ.
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Egoroff’s Theorem

Egoroff’s Theorem

Egoroff’s Theorem. Assume E has finite measure. Let {fn} be a
sequence of measurable functions on E that converges pointwise on E to
the real-valued function f . Then for each ε > 0, there is a closed set F
contained in E for which

{fn} → f uniformly on F and m(E \ F ) < ε.

Proof. Let ε > 0 and n ∈ N. Let δ = ε/2n+1 and η = 1/n.

Then by
Lemma 3.10 (this is where finite measure is used) there exists measurable
An ⊂ E and N(n) ∈ N such that |fk − f | < η = 1/n on An for all
k ≥ N(n) and m(E \ An) < δ = ε/2n+1. Define A = ∩∞n=1An. Then

m(E \ A) = m(E \ (∩∞n=1An))

= m(∪∞n=1(E \ An)) by DeMorgan’s Laws

≤
∞∑

n=1

m(E \ An) by countable subadditivity
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Egoroff’s Theorem

Egoroff’s Theorem

Proof (continued).

m(E \ A) ≤
∞∑

n=1

m(E \ An) <

∞∑
n=1

ε

2n+1
=

ε

2
.

We now show that {fn} → f uniformly on A. Let ε > 0 and choose n0

such that 1/n0 < ε.

Then from above there is N(n0) ∈ N such that
|fk − f | < 1/n0 on An0 for k ≥ N(n0). Since A ⊂ An0 and 1/n0 < ε then
the previous observation implies |fk − f | < ε on A for k ≥ N(n0). So {fn}
converges to f uniformly on A and m(E \ A) < ε/2.
Now we need to find the desired closed set. By Theorem 2.11 there is a
closed set F contained in A for which m(A \ F ) < ε/2. So
E \ F = (E \ A) ∪· (A \ F ) and
m(E \ F ) = m(E \ A) + m(A \ F ) < ε/2 + ε/2 = ε. Since F ⊂ A, then
{fn} converges uniformly on F .
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Proposition 3.11

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E . Then for
each ε > 0, there is a continuous function g on R and a closed set F
contained in E for which

f = g on F and m(E \ F ) < ε.

Proof. Let a1, a2, . . . , an be the finite number of distinct values taken by f
and let the values be taken on the sets E1,E2, . . . ,En respectively. Since
the ak ’s are distinct then the Ek ’s are disjoint.

By Theorem 2.11 there are
closed sets F1,F2, . . . ,Fn such that for each k, Fk ⊂ Ek and
m(Ek \ Fk) < ε/n. Then F = ∪n

k=1Fk is closed. Since the Ek are disjoint,
we have by countable additivity

m(E \ F ) = m((∪· nk=1Ek) \ (∪· nk=1Fk)) = m(∪· nk=1(Ek \ Fk))

=
n∑

k=1

m(Ek \ Fk) <

n∑
k=1

ε

n
= ε.
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Proposition 3.11

Proposition 3.11

Proposition 3.11. Let f be a simple function defined on E . Then for
each ε > 0, there is a continuous function g on R and a closed set F
contained in E for which

f = g on F and m(E \ F ) < ε.

Proof (continued). Define g on F as g(x) = ak for x ∈ Fk . (The Fk ’s
are disjoint, so g is well-defined.) Since the Fk ’s are closed, g is
continuous on F (for x ∈ Fk , there is an open interval containing x which
is disjoint from the other Fk ’s, so g is constant on this open interval
intersecting F ).

By Problem 3.25, g can be extended to a function
continuous on all of R. This extension of g is the desired function.
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Lusin’s Theorem

Lusin’s Theorem

Lusin’s Theorem. Let f be a real-valued measurable function on E .
Then for each ε > 0, there is a continuous function g on R and a closed
set F contained in E for which

f = g on F and m(E \ F ) < ε.

Proof. The case m(E ) = ∞ is Problem 3.29, so we consider m(E ) < ∞.

By the Simple Approximation Theorem, there is a sequence {fn} of simple
functions defined on E that converges to f pointwise on E . Let n ∈ N. By
Proposition 3.11, with f replaced by fn and ε replaced by ε/2n+1, there is
a continuous gn defined on R and a closed set Fn contained in E for which
fn = gn on Fn and m(E \ Fn) < ε/2n+1. By Egoroff’s Theorem (this is
where finite measure is used), there is a closed set F0 contained in E such
that {fn} converges to f uniformly on F0 and m(E \ F0) < ε/2. Define
F = ∩∞n=0Fn.
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Lusin’s Theorem

Lusin’s Theorem

Proof (continued). Then

m(E\F ) = m(E\∩∞n=0Fn) = m(∪∞n=0(E\Fn)) = m((E\F0)∪(∪∞n=1(E\Fn)))

<
ε

2
+
∞∑

n=1

ε

2n+1
=

ε

2
+

ε

2
= ε.

The set F is closed (since it’s the intersection of closed sets Fn). Each fn
is continuous on F since F ⊂ Fn and fn = gn on Fn and gn is continuous
on R. Finally, {fn} converges to f uniformly on F since F ⊂ F0 and {fn}
converges uniformly to f on F0 (that’s how F0 was chosen).

However, the
uniform limit of continuous functions is continuous, so the restriction of f
to set F is continuous. By Problem 3.25, there is a continuous function g
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