Lemma 4.1. Let \(\{E_i\}_{i=1}^n \) be a finite disjoint collection of measurable subsets of a set of finite measure \(E \). For \(1 \leq i \leq n \), let \(a_i \) be a real number. If \(\varphi = \sum a_i \chi_{E_i} \) on \(E \) then \(\int_E \varphi = \sum a_i m(E_i) \).

Proof. Let \(\{\lambda_1, \lambda_2, \ldots, \lambda_m\} \) be the distinct values taken by \(\varphi \). For \(1 \leq j \leq m \), set \(A_j = \{x \in E \mid \varphi(x) = \lambda_j\} \). Then the canonical representation of \(\varphi \) is \(\varphi = \sum_{j=1}^m \lambda_j \chi_{A_j} \) and so \(\int_E \varphi = \sum_{j=1}^m \lambda_j m(A_j) \). For \(1 \leq j \leq m \), let \(I_j = \{i \in \{1, 2, \ldots, n\} \mid a_i = \lambda_j \} \). Then \(\{1, 2, \ldots, n\} = \bigcup_{j=1}^m I_j \). By finite additivity, \(m(A_j) = \sum_{i \in I_j} m(E_i) \) for all \(1 \leq j \leq m \). Therefore

\[
\sum_{i=1}^n a_i m(E_i) = \sum_{j=1}^m \left[\sum_{i \in I_j} a_i m(E_i) \right] = \sum_{j=1}^m \lambda_j \left[\sum_{i \in I_j} m(E_i) \right] = \sum_{j=1}^m \lambda_j m(A_j) = \int_E \varphi. \quad \square
\]
Theorem 4.4. Let \(f \) be a bounded measurable function on a set of finite measure \(E \). Then \(f \) is integrable on \(E \).

Proof. Let \(n \in \mathbb{N} \). By the Simple Approximation Lemma, for \(\varepsilon = 1/n \) there are simple functions \(\varphi_n \) and \(\psi_n \) on \(E \) for which \(\varphi_n \leq f \leq \psi_n \) on \(E \) and \(0 \leq \psi_n - \varphi_n \leq 1/n \) on \(E \). By monotonicity and linearity for simple functions (Proposition 4.2) \(0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} m(E) \).

However,

\[
0 \leq \int_E f - \int_E \varphi = \inf \left\{ \int_E \psi \mid \psi \text{ is simple, } \psi \geq f \right\}
- \sup \left\{ \int_E \varphi \mid \varphi \text{ is simple, } \varphi \leq f \right\} \leq \int_E \psi_n - \int_E \varphi_n \leq \frac{1}{n} m(E)
\]

for all \(n \in \mathbb{N} \). Since \(m(E) < \infty \), \(0 \leq \int_E f - \int_E \varphi \leq 0 \) and so \(\int_E f = \int_E \varphi \) and \(f \) is Lebesgue integrable on \(E \). \(\square \)

Theorem 4.5. Linearity and Monotonicity.

Let \(f \) and \(g \) be bounded measurable functions on a set of finite measure \(E \). Then for all \(\alpha, \beta \in \mathbb{R} \),

\[
\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g.
\]

Moreover, if \(f \leq g \) on \(E \), then \(\int_E f \leq \int_E g \).

Proof. By Theorem 4.4, \(\alpha f + \beta g \) is integrable over \(E \). We present the proof in 3 steps.

1. If \(\psi \) is a simple function, then for \(\alpha \neq 0 \), \(\alpha \psi \) is also simple. Let \(\alpha > 0 \). Then

\[
\int_E \alpha f = \inf_{\psi \geq \alpha f} \int_E \psi = \inf_{\psi \geq \alpha f} \int_E \psi = \alpha \inf_{\psi \geq \alpha f} \int_E \psi = \alpha \int_E f.
\]

Proof (continued). Let \(\alpha < 0 \). Then

\[
\int_E \alpha f = \inf_{\psi \leq \alpha f} \int_E \psi = \inf_{\psi \leq \alpha f} \left(\int_E \psi / \alpha \right) = \alpha \sup_{\psi \leq \alpha f} \int_E \varphi = \alpha \int_E f.
\]

Also, if \(\alpha = 0 \) then of course \(0 = \int_E \alpha f = \int_E f = 0 \).

2. We finish the proof of linearity by considering \(\alpha = \beta = 1 \). Let \(\psi_1 \) and \(\psi_2 \) be simple functions for which \(f \leq \psi_1 \) and \(g \leq \psi_2 \) on \(E \). Then \(\psi_1 + \psi_2 \) is simple and \(f + g \leq \psi_1 + \psi_2 \) on \(E \). By Proposition 4.2 (for simple functions) \(f + g = \inf_{\psi \geq \psi_1 \geq f} \int_E \psi \leq \int_E (\psi_1 + \psi_2) = \int_E \psi_1 + \psi_2 \), or \(\int_E (f + g) \leq \int_E \psi_1 + \int_E \psi_2 \) for all simple \(\psi_1, \psi_2 \) where \(f \leq \psi_1, g \leq \psi_2 \).

Therefore,

\[
\int_E (f + g) \leq \inf_{\psi_2 \geq g} \left(\inf_{\psi_1 \geq f} \left(\int_E \psi_1 + \int_E \psi_2 \right) \right) = \inf_{\psi_2 \geq g} \left(\int_E f + \int_E \psi_2 \right) = \int_E f + \int_E g.
\]

Proof (continued). Now to reverse this inequality. Let \(\varphi_1 \) and \(\varphi_2 \) be simple with \(\varphi_1 \leq f, \varphi_2 \leq g \) on \(E \). Then \(\varphi_1 + \varphi_2 \leq f + g \) on \(E \) is simple. So

\[
\int_E (f + g) = \sup_{\psi \leq f + g} \int_E \psi \geq \int_E (\varphi_1 + \varphi_2) = \int_E \varphi_1 + \int_E \varphi_2.
\]

Therefore

\[
\int_E (f + g) \geq \sup_{\varphi_2 \leq g} \left(\sup_{\varphi_1 \leq f} \left(\int_E \varphi_1 + \int_E \varphi_2 \right) \right) = \sup_{\varphi_2 \leq g} \left(\int_E f + \int_E \varphi_2 \right) = \int_E f + \int_E g.
\]

Therefore, \(\int_E (f + g) = \int_E f + \int_E g \) and linearity follows.
Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$
\[\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g. \]
Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof (continued). (3) Suppose $f \leq g$ on E. By linearity,
\[\int_E (g - f) = \int_E g - \int_E f. \]
Since $g - f \geq 0$ then $\int_E (g - f) \geq \int_E \phi$ where
\[\phi \equiv 0 \text{ on } E \] (a simple function less than $g - f$). So $\int_E (g - f) \geq 0$ and
monotonicity follows.

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions
on a set of finite measure on E. If $\{f_n\} \to f$ uniformly on E, then
\[\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f. \]

Proof. Since the convergence is uniform and each f_n is bounded, the limit
function f is bounded (there exists $\varepsilon > 0$ and $n \in \mathbb{N}$ such that $|f_n - f| < \varepsilon$
on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9. Let $\varepsilon > 0$. Choose
$N \in \mathbb{N}$ such that $|f - f_n| < \varepsilon/m(E)$ on E for all $n \geq N$. By the results of
this section:

Proposition 4.8 (continued)

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions
on a set of finite measure on E. If $\{f_n\} \to f$ uniformly on E, then
\[\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f. \]

Proof (continued).
\[\left| \int_E f - \int_E f_n \right| = \left| \int_E (f - f_n) \right| \quad \text{by linearity} \]
\[\leq \int_E |f - f_n| \quad \text{by Corollary 4.7} \]
\[\leq \frac{\varepsilon}{m(E)} m(E) = \varepsilon. \]
Therefore $\lim_{n \to \infty} (\int_E f_n) = \int_E f$. \qed

Bounded Convergence Theorem.

Bounded Convergence Theorem.
Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E, that is, there is a
number $M \geq 0$ for which $|f_n| \leq M$ on E for all n. If $\{f_n\} \to f$ pointwise on
E, then
\[\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f. \]

Proof. First, f is measurable by Proposition 3.9. Since $|f_n(x)| \leq M$ for all $x \in E$ and so $|f(x)| \leq M$ for all $x \in E$. For any measurable $A \subset E$ and
$n \in \mathbb{N}$, we have
\[\int_E f_n - \int_E f = \int_E (f_n - f) \quad \text{by linearity} \]
\[= \int_A (f_n - f) + \int_{E \setminus A} f_n + \int_{E \setminus A} (-f) \quad \text{by linearity and Corollary 4.6}. \]
Bounded Convergence Theorem

Proof (continued). So by Corollaries 4.6, 4.7, and monotonicity

\[\left| \int_E f_n - \int_E f \right| = \left| \int_F (f_n - f) \right| \leq \int_F |f_n - f| = \int_A |f_n - f| + \int_{E \setminus A} |f_n - f| \]

\[\leq \int_A |f_n - f| + \int_{E \setminus A} 2M = \int_A |f_n - f| + 2M \mu(E \setminus A). \quad (7) \]

Let \(\varepsilon > 0 \). Since \(\mu(E) < \infty \) and \(f \) is real-valued, Egoroff’s Theorem implies that there is a measurable \(A \subset E \) for which \(\{f_n\} \to f \) uniformly on \(A \) and \(\mu(E \setminus A) < \varepsilon/(4M) \). By the uniform convergence on \(A \), there is \(N \in \mathbb{N} \) for which \(|f_n - f| < \frac{\varepsilon}{2\mu(A)} \) on \(A \) for all \(n \geq N \). So for \(n \geq N \), equation (7) implies

\[\left| \int_E f_n - \int_E f \right| \leq \frac{\varepsilon}{2\mu(A)} \mu(A) + 2M \mu(E \setminus A) < \frac{\varepsilon}{2} + 2M \frac{\varepsilon}{4M} = \varepsilon. \]

So \(\lim_{n \to \infty} (\int_E f_n) = \int_E (\lim_{n \to \infty} f_n) = \int_E f. \quad \square \)