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Lemma 4.1
Real Analysis Lemma 4.1. Let {E;}7_,; be a finite disjoint collection of measurable
Chanter 4. Leb Int G subsets of a set of finite measure E. For 1 </ < n, let a; be a real
apter 4. Lebesgue Integration number. If o = > a;xg on E then = > ajm(E;).
4.2. The Lebesgue Integral of a Bounded Measurable Function over a Set ? =2 3xE fE p =2 aim(E)
of Finite Measure—Proofs of Theorems Proof. Let {\1, A2, ..., A\n} be the distinct values taken by ¢. For

1<j<msetAj={xe€E]|p(x)=Aj}. Then the canonical
representation of ¢ is p = 37 A\jxa, and so [ =3, \;m(A;)). For
1<j<mletlj={ie{1,2,...,n}|a=\j}. Then

REAL {1,2,...,n} =T, [;. By finite additivity, m(A;) = Zielj m(E;) for all
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1 < j < m. Therefore

m

n
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j=1 | iel;
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Proposition 4.2. Linearity and Monotonicity of Integration

Proposition 4.2. Linearity and Monotonicity of Integration

Proposition 4.2 Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration.
Let ¢ and ¥ be simple functions defined on a set of finite measure E.

Then for any a., 3 Proof (continued). The simple function ap + B1 takes on the value

aa; + Bb; on E; and so by Lemma 4.1

/(aw+ﬁ¢)=a/s&+ﬁ/¢ n n

E E E /E(Oé’ﬁ + By) = /EZ(aai + Bbi)xg = Y _(cva; + Bbi)m(E;)
and if o < ¢ on E then [z ¢ < [ 9. =t =1

Proof. Since both  and v take on a finite number of values on E, we =« - aim(E;) + : bim(E;) = a/ + /

can choose a finite disjoint collection {E;}7_; of measurable subsets of E ; im(E) ﬁ; (&) E(p 7 E¢

where WE; = E and such that ¢ and v are both constant on each E;. Let
a; and b;, respectively, denote the values of p and ¢) on E; (1 < i< n).
Then representations of ¢ and ¢ (though maybe not the canonical
representations since the a;'s may not be distinct and the b;'s may not be
distinct) are o = Y1 ; ajxg and ¢ = Y i_; bixg. So by Lemma 4.1,
fE ¢ =iy aim(E;) and fE Y= 1 bim(E).
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To prove monotonicity, let ¢ < @ on E and define n =14 — p on E. By
the linearity above, [z ¢ — [ = [(Y— ) = [gn>0sincenis a
nonnegative simple function on E (i.e., fE 7 is a sum of nonnegative
values times nonnegative measures). O



Theorem 4.3

Theorem 4.3

Theorem 4.3. Let f be a bounded function defined on [a, b]. If f is
Riemann integrable over [a, b] then it is Lebesgue integrable over [a, b]
and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper
and lower Riemann integrals are defined in terms of step functions. Since
step functions are also simple functions,

b b b
R/ f(x)dx = sup {/ s} <  sup {/ go} :/ f
Ja_ s<f a p<f a [2,b]

s a step function p simple

- b
< f= inf {/ 1/)} < inf
[,5] > f a S>f

1 simple S a step function
If £ is Riemann integrable, then the inequalities must be equalities and the
Riemann integral equals the Lebesgue integral, as claimed. O
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Theorem 4.5

Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure
E. Then for all o, € R

/E(aerﬂg):a/Ef—l—ﬁ/Eg

Moreover, if f < g on E, then [ f < [.g.

Proof. By Theorem 4.4, af + (3g is integrable over E. We present the
proof in 3 steps.

(1) If ¢ is a simple function, then for o # 0, as) is also simple. Let a > 0.
Then

o= ot [v=int [v=aint [vja=a]r
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{/ bs} - Rff(x) i

Theorem 4.4

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite
measure E. Then f is integrable on E.

Proof. Let n € N. By the Simple Approximation Lemma, for ¢ = 1/n
there are simple functions ¢, and %, on E for which ¢, < f <4, on E
and 0 < ¢, — ¢p, < 1/non E. By monotonicity and linearity for simple
functions (Proposition 4.2) 0 < [ ¢n — [0 = [c(¥n — ¢n) < 1m(E).

However,
0< /f—/f:inf{/w\wissimple»¢2f}
JE JE JE

_sup{/ap!goissimple,cpgf}g/qpn_//pnglm(E)
E E E n

for all n € N. Since m(E) < 00, 0 < Ef — Jef <0and so f_Ef = [f
and f is Lebesgue integrable on E. o O
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Theorem 4.5. Linearity and Monotonicity

Theorem 4.5 (continued 1)

Proof (continued). Let o < 0. Then / af = inf [ o= inf Y=
E pzaf Jg p/a<f JE

inf <a/ go/a) =a sup / o/a = a/ f. Also, if @ = 0 then of
p/a<f E o/a<fJE E
course 0 = [paf =a [ f=0.

(2) We finish the proof of linearity by considering « = = 1. Let 91 and
1o be simple functions for which f <1 and g < v, on E. Then 1 + ¢»
is simple and f + g < 41 4+ 1, on E. By Proposition 4.2 (for simple
functions) [(f +g) =infosrig [0 < [e(¥1+2) = [gi1 + [z 12, or
fE(f+g) < fEd)l + fEdJQ for all simple 11, 9o where f < 1, g < 9».

Therefore, _ _
f+g)< inf { inf / +/ ))
/E( g) =< inf <w'1>f< U1 o
:mf(/f+/z/}2> /f+/
Yo>g
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Theorem 4.5 (continued 2)

Theorem 4.5 (continued 3)

Proof (continued). Now to reverse this inequality. Let ¢1 and ¢, be Theorem 4.5. Linearity and MOI’IOtOI’lIC.Ity. -
simple with 1 < £, g2 < g on E. Then o1 + oy < f + g on E is simple Let f and g be bounded measurable functions on a set of finite measure
So - - ' - ' E. Then forall o, € R

/E('“Fg):ét;lig/EsOZ/E(<P1+LP2):/E991+/E992- /lf(af+ﬁg):a/,5f+ﬁ/,5g

Therefore v cr i f p f
oreover, if f < g on E, then < |-g.
/(f—i—g)z sup (sup (/¢1+/¢2>> E E
p2<g \p1<f E E
Proof (continued). (3) Suppose f < g on E. By linearity,

= sup (/Ef+/E<P2>:/Ef+/Eg- fE —f)=[cg— Jcf. Since g —f >0 then [.(g —f)>fEnpwhere

02<
228 = 0 on E (a simple function less than g — f). So fE ) >0 and
Therefore, [(f+g) = [¢f + [z g and linearity follows. monoton|C|ty follows. O
Real Analysis November 2, 2020 10 /17 Real Analysis November 2, 2020 11 /17

Corollary 4.6 Corollary 4.7

Corollary 4.6

Corollary 4.6. Let f be a bounded measurable function on a set E of finite
measure. Suppose A and B are measurable disjoint subsets of E. Then

[ =i
AUB A B

Proof. Both f - x4 and f - xg are bounded measurable functions on E.
Since A and B are disjoint then f - xaug =f - xa + f - x5. By Problem
4.10, for any measurable subset E; of E we have fEl f=Jcf xg- Soby
linearity (Theorem 4.5) we have

/ f_/fXAuB—/(fXA+fXB /fXA+/fXB—/f+/
AUB

as claimed.
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Corollary 4.7

Corollary 4.7. Let f be a bounded measurable function on a set of finite

measure E. Then
f g/m.
E

Proof. The function |f| is measurable by Proposition 3.7. Certainly |f]| is
bounded. Now —|f| < f < |f| on E. So by linearity and monotonicity

(Theorem 4.5) we have
JEVAL
E E

- [ir1s [r< [io
E E E

as claimed. O
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Proposition 4.8

Proposition 4.8

Proposition 4.8. Let {f,} be a sequence of bounded measurable functions
on a set of finite measure on E. If {f,} — f uniformly on E, then

jim ([o#) = [ Qime) = [+

Proof. Since the convergence is uniform and each f, is bounded, the limit
function f is bounded (there exists € > 0 and n € N such that |f, — f| < ¢
on E). Since f is the pointwise limit of a sequence of measurable
functions, then f is measurable by Proposition 3.9. Let £ > 0. Choose

N € N such that |f — f,| < e/m(E) on E for all n > N. By the results of
this section:
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Bounded Convergence Theorem

Bounded Convergence Theorem

Bounded Convergence Theorem.

Let {f,} be a sequence of measurable functions on a set of finite measure
E. Suppose {f,} is uniformly pointwise bounded on E, that is, there is a
number M > 0 for which |f,| < M on E for all n. If {f,} — f pointwise on

E, then
lim (/ fn) / I|m f /f
n—oo E n—oo

Proof. First, f is measurable by Proposition 3.9. Since |f,(x)| < M for all
x € E and so |f(x)| < M for all x € E. For any measurable A C E and
n € N, we have

/fn_/ Fo— /(f,,—f) by linearity (Theorem 4.5)
E E E

= /(f,, —f) +/ (f, — f) by Corollary 4.6.
A E\A
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Proposition 4.8

Proposition 4.8 (continued)

Proposition 4.8. Let {f,} be a sequence of bounded measurable functions
on a set of finite measure on E. If {f,} — f uniformly on E, then

jim ([#) = [ (im6) = [r

Proof (continued).

by linearity (Theorem 4.5)

L=5)

< / |f — fn| by Corollary 4.7
E

3
< E)=
m(E) m(E) =¢
Therefore lim, oo ( [z fa) = [£ - O
Real Analysis November 2, 2020 15 / 17

Bounded Convergence Theorem

Bounded Convergence Theorem

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

f—f\ e /|f—f|+/ - f]

g/A|fn—f|+/E\A2M:/A|fn—f|+2/v/m(E\A). (7)

Let ¢ > 0. Since m(E) < oo and f is real-valued, Egoroff’s Theorem
implies that there is a measurable A C E for which {f,} — f uniformly on
A and m(E \ A) < £/(4M). By the uniform convergence on A, there is

N € N for which |fn—f|<#(A)onAforall n>N. Soforn> N,
equation (7) implies

f_

£
f —m(A) +2M m(E\ A 2/\/I— =e.
‘<2m(A)m()+ m(E\ )<2+ ik
So limp—oo( g fa) = [e(limnoo fa) = [£ F. m
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