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Lemma 4.1

Lemma 4.1

Lemma 4.1. Let {Ei}n
i=1 be a finite disjoint collection of measurable

subsets of a set of finite measure E . For 1 ≤ i ≤ n, let ai be a real
number. If ϕ =

∑
aiχEi

on E then
∫
E ϕ =

∑
aim(Ei ).

Proof. Let {λ1, λ2, . . . , λm} be the distinct values taken by ϕ. For
1 ≤ j ≤ m, set Aj = {x ∈ E | ϕ(x) = λj}.

Then the canonical
representation of ϕ is ϕ =

∑m
j=1 λjχAj

and so
∫
E ϕ =

∑m
j=1 λjm(Aj). For

1 ≤ j ≤ m, let Ij = {i ∈ {1, 2, . . . , n} | ai = λj}. Then
{1, 2, . . . , n} = ∪· mj=1Ij . By finite additivity, m(Aj) =

∑
i∈Ij

m(Ei ) for all
1 ≤ j ≤ m. Therefore

n∑
i=1

aim(Ei ) =
m∑

j=1

∑
i∈Ij

aim(Ei )


=

m∑
j=1

λj

∑
i∈Ij

m(Ei )

 =
m∑

j=1

λjm(Aj) =

∫
E
ϕ. �
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Proposition 4.2. Linearity and Monotonicity of Integration

Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration.
Let ϕ and ψ be simple functions defined on a set of finite measure E .
Then for any α, β ∫

E
(αϕ+ βψ) = α

∫
E
ϕ+ β

∫
E
ψ

and if ϕ ≤ ψ on E then
∫
E ϕ ≤

∫
E ψ.

Proof. Since both ϕ and ψ take on a finite number of values on E , we
can choose a finite disjoint collection {Ei}n

i=1 of measurable subsets of E
where ∪· Ei = E and such that ϕ and ψ are both constant on each Ei .

Let
ai and bi , respectively, denote the values of ϕ and ψ on Ei (1 ≤ i ≤ n).
Then representations of ϕ and ψ (though maybe not the canonical
representations since the ai ’s may not be distinct and the bi ’s may not be
distinct) are ϕ =

∑n
i=1 aiχEi

and ψ =
∑n

i=1 biχEi
. So by Lemma 4.1,∫

E ϕ =
∑n

i=1 aim(Ei ) and
∫
E ψ =

∑n
i=1 bim(Ei ).
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Proposition 4.2. Linearity and Monotonicity of Integration

Proposition 4.2

Proof (continued). The simple function αϕ+ βψ takes on the value
αai + βbi on Ei and so by Lemma 4.1∫

E
(αϕ+ βψ) =

∫
E

n∑
i=1

(αai + βbi )χEi
=

n∑
i=1

(αai + βbi )m(Ei )

= α

n∑
i=1

aim(Ei ) + β

n∑
i=1

bim(Ei ) = α

∫
E
ϕ+ β

∫
E
ψ.

To prove monotonicity, let ϕ ≤ ψ on E and define η = ψ − ϕ on E . By
the linearity above,

∫
E ψ −

∫
E ϕ =

∫
E (ψ − ϕ) =

∫
E η ≥ 0 since η is a

nonnegative simple function on E (i.e.,
∫
E η is a sum of nonnegative

values times nonnegative measures).
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Theorem 4.3

Theorem 4.3

Theorem 4.3. Let f be a bounded function defined on [a, b]. If f is
Riemann integrable over [a, b] then it is Lebesgue integrable over [a, b]
and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper
and lower Riemann integrals are defined in terms of step functions. Since
step functions are also simple functions,

R

∫ b

a
f (x) dx = sup

s ≤ f
s a step function

{∫ b

a
s

}
≤ sup

ϕ ≤ f
ϕ simple

{∫ b

a
ϕ

}
=

∫
[a,b]

f

≤
∫

[a,b]
f = inf

ψ ≥ f
ψ simple

{∫ b

a
ψ

}
≤ inf

S ≥ f
S a step function

{∫ b

a
S

}
= R

∫ b

a
f (x) dx .

If f is Riemann integrable, then the inequalities must be equalities and the
Riemann integral equals the Lebesgue integral, as claimed.
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Theorem 4.4

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite
measure E . Then f is integrable on E .

Proof. Let n ∈ N. By the Simple Approximation Lemma, for ε = 1/n
there are simple functions ϕn and ψn on E for which ϕn ≤ f ≤ ψn on E
and 0 ≤ ψn − ϕn ≤ 1/n on E . By monotonicity and linearity for simple
functions (Proposition 4.2) 0 ≤

∫
E ψn −

∫
E ϕn =

∫
E (ψn − ϕn) ≤ 1

nm(E ).

However,

0 ≤
∫

E
f −

∫
E
f = inf

{∫
E
ψ | ψ is simple, ψ ≥ f

}

− sup

{∫
E
ϕ | ϕ is simple, ϕ ≤ f

}
≤
∫

E
ψn −

∫
E
ϕn ≤

1

n
m(E )

for all n ∈ N. Since m(E ) <∞, 0 ≤
∫
E f −

∫
E f ≤ 0 and so

∫
E f =

∫
E f

and f is Lebesgue integrable on E .
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Theorem 4.5. Linearity and Monotonicity

Theorem 4.5

Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure
E . Then for all α, β ∈ R∫

E
(αf + βg) = α

∫
E

f + β

∫
E

g .

Moreover, if f ≤ g on E , then
∫
E f ≤

∫
E g .

Proof. By Theorem 4.4, αf + βg is integrable over E . We present the
proof in 3 steps.

(1) If ψ is a simple function, then for α 6= 0, αψ is also simple. Let α > 0.
Then ∫

E
αf = inf

ψ≥αf

∫
E
ψ = inf

ψ/α≥f

∫
E
ψ = α inf

ψ/α≥f

∫
E
ψ/α = α

∫
E

f .
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Theorem 4.5. Linearity and Monotonicity

Theorem 4.5 (continued 1)

Proof (continued). Let α < 0. Then

∫
E
αf = inf

ϕ≥αf

∫
E
ϕ = inf

ϕ/α≤f

∫
E
ϕ =

inf
ϕ/α≤f

(
α

∫
E
ϕ/α

)
= α sup

ϕ/α≤f

∫
E
ϕ/α = α

∫
E

f . Also, if α = 0 then of

course 0 =
∫
E αf = α

∫
E f = 0.

(2) We finish the proof of linearity by considering α = β = 1. Let ψ1 and
ψ2 be simple functions for which f ≤ ψ1 and g ≤ ψ2 on E .

Then ψ1 + ψ2

is simple and f + g ≤ ψ1 + ψ2 on E . By Proposition 4.2 (for simple
functions)

∫
E (f + g) = infϕ≥f +g

∫
E ϕ ≤

∫
E (ψ1 + ψ2) =

∫
E ψ1 +

∫
E ψ2, or∫

E (f + g) ≤
∫
E ψ1 +

∫
E ψ2 for all simple ψ1, ψ2 where f ≤ ψ1, g ≤ ψ2.

Therefore, ∫
E
(f + g) ≤ inf

ψ2≥g

(
inf
ψ1≥f

(∫
E
ψ1 +

∫
E
ψ2

))
= inf

ψ2≥g

(∫
E

f +

∫
E
ψ2

)
=

∫
E

f +

∫
E

g .
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is simple and f + g ≤ ψ1 + ψ2 on E . By Proposition 4.2 (for simple
functions)

∫
E (f + g) = infϕ≥f +g

∫
E ϕ ≤

∫
E (ψ1 + ψ2) =

∫
E ψ1 +

∫
E ψ2, or∫

E (f + g) ≤
∫
E ψ1 +

∫
E ψ2 for all simple ψ1, ψ2 where f ≤ ψ1, g ≤ ψ2.

Therefore, ∫
E
(f + g) ≤ inf

ψ2≥g

(
inf
ψ1≥f

(∫
E
ψ1 +

∫
E
ψ2

))
= inf

ψ2≥g

(∫
E

f +

∫
E
ψ2

)
=

∫
E

f +

∫
E

g .
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Theorem 4.5. Linearity and Monotonicity

Theorem 4.5 (continued 3)

Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure
E . Then for all α, β ∈ R∫

E
(αf + βg) = α

∫
E

f + β

∫
E

g .

Moreover, if f ≤ g on E , then
∫
E f ≤

∫
E g .

Proof (continued). (3) Suppose f ≤ g on E . By linearity,∫
E (g − f ) =

∫
E g −

∫
E f . Since g − f ≥ 0 then

∫
E (g − f ) ≥

∫
E ϕ where

ϕ ≡ 0 on E (a simple function less than g − f ). So
∫
E (g − f ) ≥ 0 and

monotonicity follows.
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Corollary 4.6

Corollary 4.6

Corollary 4.6. Let f be a bounded measurable function on a set E of finite
measure. Suppose A and B are measurable disjoint subsets of E . Then∫

A∪·B
f =

∫
A

f +

∫
B

f .

Proof. Both f · χA and f · χB are bounded measurable functions on E .
Since A and B are disjoint then f · χA∪·B = f · χA + f · χB . By Problem
4.10, for any measurable subset E1 of E we have

∫
E1

f =
∫
E f · χE1 .

So by
linearity (Theorem 4.5) we have∫

A∪·B
f =

∫
E

f ·χA∪·B =

∫
E
(f ·χA+f ·χB) =

∫
E

f ·χA+

∫
E

f ·χB =

∫
A

f +

∫
B

f ,

as claimed.
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Corollary 4.7

Corollary 4.7

Corollary 4.7. Let f be a bounded measurable function on a set of finite
measure E . Then ∣∣∣∣∫

E
f

∣∣∣∣ ≤ ∫
E
|f |.

Proof. The function |f | is measurable by Proposition 3.7. Certainly |f | is
bounded. Now −|f | ≤ f ≤ |f | on E . So by linearity and monotonicity
(Theorem 4.5) we have

−
∫

E
|f | ≤

∫
E

f ≤
∫

E
|f | or

∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E
|f |,

as claimed.
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Proposition 4.8

Proposition 4.8

Proposition 4.8. Let {fn} be a sequence of bounded measurable functions
on a set of finite measure on E . If {fn} → f uniformly on E , then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn
)

=

∫
E

f .

Proof. Since the convergence is uniform and each fn is bounded, the limit
function f is bounded (there exists ε > 0 and n ∈ N such that |fn − f | < ε
on E ). Since f is the pointwise limit of a sequence of measurable
functions, then f is measurable by Proposition 3.9.

Let ε > 0. Choose
N ∈ N such that |f − fn| < ε/m(E ) on E for all n ≥ N. By the results of
this section:
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Proposition 4.8

Proposition 4.8 (continued)

Proposition 4.8. Let {fn} be a sequence of bounded measurable functions
on a set of finite measure on E . If {fn} → f uniformly on E , then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn
)

=

∫
E

f .

Proof (continued).∣∣∣∣∫
E

f −
∫

E
fn

∣∣∣∣ =

∣∣∣∣∫
E
(f − fn)

∣∣∣∣ by linearity (Theorem 4.5)

≤
∫

E
|f − fn| by Corollary 4.7

<
ε

m(E )
m(E ) = ε.

Therefore limn→∞(
∫
E fn) =

∫
E f .
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Bounded Convergence Theorem

Bounded Convergence Theorem

Bounded Convergence Theorem.
Let {fn} be a sequence of measurable functions on a set of finite measure
E . Suppose {fn} is uniformly pointwise bounded on E , that is, there is a
number M ≥ 0 for which |fn| ≤ M on E for all n. If {fn} → f pointwise on
E , then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn
)

=

∫
E

f .

Proof. First, f is measurable by Proposition 3.9. Since |fn(x)| ≤ M for all
x ∈ E and so |f (x)| ≤ M for all x ∈ E .

For any measurable A ⊂ E and
n ∈ N, we have∫

E
fn −

∫
E

f =

∫
E
(fn − f ) by linearity (Theorem 4.5)

=

∫
A
(fn − f ) +

∫
E\A

(fn − f ) by Corollary 4.6.
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Bounded Convergence Theorem

Bounded Convergence Theorem

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,∣∣∣∣∫
E

fn −
∫

E
f

∣∣∣∣ = ∣∣∣∣∫
E
(fn − f )

∣∣∣∣ ≤ ∫
E
|fn − f | =

∫
A
|fn − f |+

∫
E\A

|fn − f |

≤
∫

A
|fn − f |+

∫
E\A

2M =

∫
A
|fn − f |+ 2Mm(E \ A). (7)

Let ε > 0. Since m(E ) <∞ and f is real-valued, Egoroff’s Theorem
implies that there is a measurable A ⊂ E for which {fn} → f uniformly on
A and m(E \ A) < ε/(4M). By the uniform convergence on A, there is
N ∈ N for which |fn − f | < ε

2m(A) on A for all n ≥ N.

So for n ≥ N,

equation (7) implies∣∣∣∣∫
E

fn −
∫

E
f

∣∣∣∣ < ε

2m(A)
m(A) + 2M m(E \ A) <

ε

2
+ 2M

ε

4M
= ε.

So limn→∞(
∫
E fn) =

∫
E (limn→∞ fn) =

∫
E f .
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