Real Analysis

Chapter 4. Lebesgue Integration

4.2. The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure—Proofs of Theorems

Real Analysis

Table of contents

- Lemma 4.1
- 2 Proposition 4.2. Linearity and Monotonicity of Integration
- 3 Theorem 4.3
- Theorem 4.4
- 5 Theorem 4.5. Linearity and Monotonicity
- 6 Corollary 4.6
- Corollary 4.7
- 8 Proposition 4.8
- 9 Bounded Convergence Theorem

Lemma 4.1. Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \le i \le n$, let a_i be a real number. If $\varphi = \sum a_i \chi_{E_i}$ on E then $\int_E \varphi = \sum a_i m(E_i)$.

Proof. Let $\{\lambda_1, \lambda_2, \dots, \lambda_m\}$ be the distinct values taken by φ . For $1 \le j \le m$, set $A_j = \{x \in E \mid \varphi(x) = \lambda_j\}$.

Lemma 4.1. Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure *E*. For $1 \le i \le n$, let a_i be a real number. If $\varphi = \sum a_i \chi_{E_i}$ on *E* then $\int_E \varphi = \sum a_i m(E_i)$.

Proof. Let $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ be the distinct values taken by φ . For $1 \leq j \leq m$, set $A_j = \{x \in E \mid \varphi(x) = \lambda_j\}$. Then the canonical representation of φ is $\varphi = \sum_{j=1}^m \lambda_j \chi_{A_j}$ and so $\int_E \varphi = \sum_{j=1}^m \lambda_j m(A_j)$. For $1 \leq j \leq m$, let $l_j = \{i \in \{1, 2, \ldots, n\} \mid a_i = \lambda_j\}$. Then $\{1, 2, \ldots, n\} = \bigcup_{j=1}^m l_j$.

Lemma 4.1. Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure *E*. For $1 \le i \le n$, let a_i be a real number. If $\varphi = \sum a_i \chi_{E_i}$ on *E* then $\int_E \varphi = \sum a_i m(E_i)$.

Proof. Let $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ be the distinct values taken by φ . For $1 \leq j \leq m$, set $A_j = \{x \in E \mid \varphi(x) = \lambda_j\}$. Then the canonical representation of φ is $\varphi = \sum_{j=1}^m \lambda_j \chi_{A_j}$ and so $\int_E \varphi = \sum_{j=1}^m \lambda_j m(A_j)$. For $1 \leq j \leq m$, let $I_j = \{i \in \{1, 2, \ldots, n\} \mid a_i = \lambda_j\}$. Then $\{1, 2, \ldots, n\} = \bigcup_{j=1}^m I_j$. By finite additivity, $m(A_j) = \sum_{i \in I_j} m(E_i)$ for all $1 \leq j \leq m$. Therefore

$$\sum_{i=1}^{n} a_i m(E_i) = \sum_{j=1}^{m} \left[\sum_{i \in I_j} a_i m(E_i) \right]$$
$$= \sum_{j=1}^{m} \lambda_j \left[\sum_{i \in I_j} m(E_i) \right] = \sum_{j=1}^{m} \lambda_j m(A_j) = \int_E \varphi. \quad \Box$$

Lemma 4.1. Let $\{E_i\}_{i=1}^n$ be a finite disjoint collection of measurable subsets of a set of finite measure *E*. For $1 \le i \le n$, let a_i be a real number. If $\varphi = \sum a_i \chi_{E_i}$ on *E* then $\int_E \varphi = \sum a_i m(E_i)$.

Proof. Let $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ be the distinct values taken by φ . For $1 \leq j \leq m$, set $A_j = \{x \in E \mid \varphi(x) = \lambda_j\}$. Then the canonical representation of φ is $\varphi = \sum_{j=1}^m \lambda_j \chi_{A_j}$ and so $\int_E \varphi = \sum_{j=1}^m \lambda_j m(A_j)$. For $1 \leq j \leq m$, let $I_j = \{i \in \{1, 2, \ldots, n\} \mid a_i = \lambda_j\}$. Then $\{1, 2, \ldots, n\} = \bigcup_{j=1}^m I_j$. By finite additivity, $m(A_j) = \sum_{i \in I_j} m(E_i)$ for all $1 \leq j \leq m$. Therefore

$$\sum_{i=1}^{n} a_i m(E_i) = \sum_{j=1}^{m} \left\lfloor \sum_{i \in I_j} a_i m(E_i) \right\rfloor$$
$$= \sum_{j=1}^{m} \lambda_j \left[\sum_{i \in I_j} m(E_i) \right] = \sum_{j=1}^{m} \lambda_j m(A_j) = \int_E \varphi. \quad \Box$$

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure *E*. Then for any α, β

$$\int_{E} (\alpha \varphi + \beta \psi) = \alpha \int_{E} \varphi + \beta \int_{E} \psi$$

and if $\varphi \leq \psi$ on *E* then $\int_{E} \varphi \leq \int_{E} \psi$.

Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\{E_i\}_{i=1}^n$ of measurable subsets of E where $\bigcup E_i = E$ and such that φ and ψ are both constant on each E_i .

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure *E*. Then for any α, β

$$\int_{E} (\alpha \varphi + \beta \psi) = \alpha \int_{E} \varphi + \beta \int_{E} \psi$$

and if $\varphi \leq \psi$ on E then $\int_E \varphi \leq \int_E \psi$.

Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\{E_i\}_{i=1}^n$ of measurable subsets of E where $\bigcup E_i = E$ and such that φ and ψ are both constant on each E_i . Let a_i and b_i , respectively, denote the values of φ and ψ on E_i $(1 \le i \le n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_i 's may not be distinct and the b_i 's may not be distinct) are $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$ and $\psi = \sum_{i=1}^n b_i \chi_{E_i}$.

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure *E*. Then for any α, β

$$\int_{E} (\alpha \varphi + \beta \psi) = \alpha \int_{E} \varphi + \beta \int_{E} \psi$$

and if $\varphi \leq \psi$ on E then $\int_E \varphi \leq \int_E \psi$.

Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\{E_i\}_{i=1}^n$ of measurable subsets of E where $\bigcup E_i = E$ and such that φ and ψ are both constant on each E_i . Let a_i and b_i , respectively, denote the values of φ and ψ on E_i $(1 \le i \le n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_i 's may not be distinct and the b_i 's may not be distinct) are $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$ and $\psi = \sum_{i=1}^n b_i \chi_{E_i}$. So by Lemma 4.1, $\int_E \varphi = \sum_{i=1}^n a_i m(E_i)$ and $\int_E \psi = \sum_{i=1}^n b_i m(E_i)$.

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure *E*. Then for any α, β

$$\int_{E} (\alpha \varphi + \beta \psi) = \alpha \int_{E} \varphi + \beta \int_{E} \psi$$

and if $\varphi \leq \psi$ on E then $\int_E \varphi \leq \int_E \psi$.

Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\{E_i\}_{i=1}^n$ of measurable subsets of E where $\bigcup E_i = E$ and such that φ and ψ are both constant on each E_i . Let a_i and b_i , respectively, denote the values of φ and ψ on E_i $(1 \le i \le n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_i 's may not be distinct and the b_i 's may not be distinct) are $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$ and $\psi = \sum_{i=1}^n b_i \chi_{E_i}$. So by Lemma 4.1, $\int_E \varphi = \sum_{i=1}^n a_i m(E_i)$ and $\int_E \psi = \sum_{i=1}^n b_i m(E_i)$.

Proof (continued). The simple function $\alpha \varphi + \beta \psi$ takes on the value $\alpha a_i + \beta b_i$ on E_i and so by Lemma 4.1

$$\int_{E} (\alpha \varphi + \beta \psi) = \int_{E} \sum_{i=1}^{n} (\alpha a_{i} + \beta b_{i}) \chi_{E_{i}} = \sum_{i=1}^{n} (\alpha a_{i} + \beta b_{i}) m(E_{i})$$

$$= \alpha \sum_{i=1}^{n} a_i m(E_i) + \beta \sum_{i=1}^{n} b_i m(E_i) = \alpha \int_E \varphi + \beta \int_E \psi.$$

To prove monotonicity, let $\varphi \leq \psi$ on E and define $\eta = \psi - \varphi$ on E. By the linearity above, $\int_E \psi - \int_E \varphi = \int_E (\psi - \varphi) = \int_E \eta \geq 0$ since η is a nonnegative simple function on E (i.e., $\int_E \eta$ is a sum of nonnegative values times nonnegative measures).

Proof (continued). The simple function $\alpha \varphi + \beta \psi$ takes on the value $\alpha a_i + \beta b_i$ on E_i and so by Lemma 4.1

$$\int_{E} (\alpha \varphi + \beta \psi) = \int_{E} \sum_{i=1}^{n} (\alpha a_{i} + \beta b_{i}) \chi_{E_{i}} = \sum_{i=1}^{n} (\alpha a_{i} + \beta b_{i}) m(E_{i})$$

$$= \alpha \sum_{i=1}^{n} a_i m(E_i) + \beta \sum_{i=1}^{n} b_i m(E_i) = \alpha \int_E \varphi + \beta \int_E \psi.$$

To prove monotonicity, let $\varphi \leq \psi$ on E and define $\eta = \psi - \varphi$ on E. By the linearity above, $\int_E \psi - \int_E \varphi = \int_E (\psi - \varphi) = \int_E \eta \geq 0$ since η is a nonnegative simple function on E (i.e., $\int_E \eta$ is a sum of nonnegative values times nonnegative measures).

Theorem 4.3. Let f be a bounded function defined on [a, b]. If f is Riemann integrable over [a, b] then it is Lebesgue integrable over [a, b] and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper and lower Riemann integrals are defined in terms of step functions. Since step functions are also simple functions,

$$R \underbrace{\int_{a}^{b} f(x) \, dx}_{s} = \sup_{\substack{s \leq f \\ s \text{ a step function}}} \left\{ \int_{a}^{b} s \right\} \leq \sup_{\substack{\varphi \leq f \\ \varphi \text{ simple}}} \left\{ \int_{a}^{b} \varphi \right\} = \underbrace{\int_{[a,b]} f}_{\varphi \text{ simple}} f$$
$$\leq \overline{\int_{[a,b]} f} = \inf_{\substack{\psi \geq f \\ \psi \text{ simple}}} \left\{ \int_{a}^{b} \psi \right\} \leq \inf_{\substack{S \geq f \\ S \text{ a step function}}} \left\{ \int_{a}^{b} S \right\} = R \overline{\int_{a}^{b} f(x) \, dx}.$$

If f is Riemann integrable, then the inequalities must be equalities and the Riemann integral equals the Lebesgue integral, as claimed.

Theorem 4.3. Let f be a bounded function defined on [a, b]. If f is Riemann integrable over [a, b] then it is Lebesgue integrable over [a, b] and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper and lower Riemann integrals are defined in terms of step functions. Since step functions are also simple functions,

$$R \underbrace{\int_{a}^{b} f(x) \, dx}_{s} = \sup_{\substack{s \leq f \\ s \text{ a step function}}} \left\{ \int_{a}^{b} s \right\} \leq \sup_{\substack{\varphi \leq f \\ \varphi \text{ simple}}} \left\{ \int_{a}^{b} \varphi \right\} = \underbrace{\int_{[a,b]} f}_{\varphi \text{ simple}} f$$
$$\leq \overline{\int_{[a,b]} f} = \inf_{\substack{\psi \geq f \\ \psi \text{ simple}}} \left\{ \int_{a}^{b} \psi \right\} \leq \inf_{\substack{S \geq f \\ S \text{ a step function}}} \left\{ \int_{a}^{b} S \right\} = R \overline{\int_{a}^{b} f(x) \, dx}.$$

If f is Riemann integrable, then the inequalities must be equalities and the Riemann integral equals the Lebesgue integral, as claimed.

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon = 1/n$ there are simple functions φ_n and ψ_n on E for which $\varphi_n \leq f \leq \psi_n$ on E and $0 \leq \psi_n - \varphi_n \leq 1/n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} m(E)$.

Real Analysis

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon = 1/n$ there are simple functions φ_n and ψ_n on E for which $\varphi_n \leq f \leq \psi_n$ on E and $0 \leq \psi_n - \varphi_n \leq 1/n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} m(E)$. However,

$$0 \leq \overline{\int_{E}} f - \underline{\int_{E}} f = \inf \left\{ \int_{E} \psi \mid \psi \text{ is simple}, \psi \geq f \right\}$$
$$-\sup \left\{ \int_{E} \varphi \mid \varphi \text{ is simple}, \varphi \leq f \right\} \leq \int_{E} \psi_{n} - \int_{E} \varphi_{n} \leq \frac{1}{n} m(E)$$

for all $n \in \mathbb{N}$.

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon = 1/n$ there are simple functions φ_n and ψ_n on E for which $\varphi_n \leq f \leq \psi_n$ on E and $0 \leq \psi_n - \varphi_n \leq 1/n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} m(E)$. However,

$$0 \leq \int_{E} f - \underline{\int_{E}} f = \inf \left\{ \int_{E} \psi \mid \psi \text{ is simple}, \psi \geq f \right\}$$
$$-\sup \left\{ \int_{E} \varphi \mid \varphi \text{ is simple}, \varphi \leq f \right\} \leq \int_{E} \psi_{n} - \int_{E} \varphi_{n} \leq \frac{1}{n} m(E)$$

for all $n \in \mathbb{N}$. Since $m(E) < \infty$, $0 \le \overline{\int_E} f - \underline{\int_E} f \le 0$ and so $\overline{\int_E} f = \underline{\int_E} f$ and f is Lebesgue integrable on E.

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon = 1/n$ there are simple functions φ_n and ψ_n on E for which $\varphi_n \leq f \leq \psi_n$ on E and $0 \leq \psi_n - \varphi_n \leq 1/n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_E \psi_n - \int_E \varphi_n = \int_E (\psi_n - \varphi_n) \leq \frac{1}{n} m(E)$. However,

$$0 \leq \overline{\int_{E}} f - \underline{\int_{E}} f = \inf \left\{ \int_{E} \psi \mid \psi \text{ is simple}, \psi \geq f \right\}$$
$$-\sup \left\{ \int_{E} \varphi \mid \varphi \text{ is simple}, \varphi \leq f \right\} \leq \int_{E} \psi_{n} - \int_{E} \varphi_{n} \leq \frac{1}{n} m(E)$$
for all $n \in \mathbb{N}$. Since $m(E) < \infty$, $0 \leq \overline{\int_{E}} f - \underline{\int_{E}} f \leq 0$ and so $\overline{\int_{E}} f = \underline{\int_{E}} f$

and f is Lebesgue integrable on E.

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha,\beta\in\mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$$

Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof. By Theorem 4.4, $\alpha f + \beta g$ is integrable over *E*. We present the proof in 3 steps.

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha,\beta\in\mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$$

Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof. By Theorem 4.4, $\alpha f + \beta g$ is integrable over *E*. We present the proof in 3 steps.

(1) If ψ is a simple function, then for $\alpha \neq$ 0, $\alpha \psi$ is also simple. Let $\alpha >$ 0. Then

$$\int_{E} \alpha f = \inf_{\psi \ge \alpha f} \int_{E} \psi = \inf_{\psi/\alpha \ge f} \int_{E} \psi = \alpha \inf_{\psi/\alpha \ge f} \int_{E} \psi/\alpha = \alpha \int_{E} f.$$

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha,\beta\in\mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$$

Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof. By Theorem 4.4, $\alpha f + \beta g$ is integrable over *E*. We present the proof in 3 steps.

(1) If ψ is a simple function, then for $\alpha \neq 0$, $\alpha \psi$ is also simple. Let $\alpha > 0$. Then

$$\int_{E} \alpha f = \inf_{\psi \ge \alpha f} \int_{E} \psi = \inf_{\psi/\alpha \ge f} \int_{E} \psi = \alpha \inf_{\psi/\alpha \ge f} \int_{E} \psi/\alpha = \alpha \int_{E} f.$$

Proof (continued). Let $\alpha < 0$. Then $\int_{E} \alpha f = \inf_{\varphi \ge \alpha f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \sup_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \int_{E} f$. Also, if $\alpha = 0$ then of course $0 = \int_{E} \alpha f = \alpha \int_{E} f = 0$.

(2) We finish the proof of linearity by considering $\alpha = \beta = 1$. Let ψ_1 and ψ_2 be simple functions for which $f \leq \psi_1$ and $g \leq \psi_2$ on E.

Proof (continued). Let $\alpha < 0$. Then $\int_{E} \alpha f = \inf_{\varphi \ge \alpha f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \sup_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \int_{E} f$. Also, if $\alpha = 0$ then of course $0 = \int_{E} \alpha f = \alpha \int_{E} f = 0$.

(2) We finish the proof of linearity by considering $\alpha = \beta = 1$. Let ψ_1 and ψ_2 be simple functions for which $f \leq \psi_1$ and $g \leq \psi_2$ on E. Then $\psi_1 + \psi_2$ is simple and $f + g \leq \psi_1 + \psi_2$ on E. By Proposition 4.2 (for simple functions) $\int_E (f + g) = \inf_{\varphi \geq f+g} \int_E \varphi \leq \int_E (\psi_1 + \psi_2) = \int_E \psi_1 + \int_E \psi_2$, or $\int_E (f + g) \leq \int_E \psi_1 + \int_E \psi_2$ for all simple ψ_1, ψ_2 where $f \leq \psi_1, g \leq \psi_2$.

Proof (continued). Let $\alpha < 0$. Then $\int_{E} \alpha f = \inf_{\varphi \ge \alpha f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \left(\alpha \int_{E} \varphi/\alpha \right) = \alpha \sup_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \int_{E} f$. Also, if $\alpha = 0$ then of course $0 = \int_{E} \alpha f = \alpha \int_{E} f = 0$.

(2) We finish the proof of linearity by considering $\alpha = \beta = 1$. Let ψ_1 and ψ_2 be simple functions for which $f \leq \psi_1$ and $g \leq \psi_2$ on E. Then $\psi_1 + \psi_2$ is simple and $f + g \leq \psi_1 + \psi_2$ on E. By Proposition 4.2 (for simple functions) $\int_E (f+g) = \inf_{\varphi \geq f+g} \int_E \varphi \leq \int_E (\psi_1 + \psi_2) = \int_E \psi_1 + \int_E \psi_2$, or $\int_E (f+g) \leq \int_E \psi_1 + \int_E \psi_2$ for all simple ψ_1, ψ_2 where $f \leq \psi_1, g \leq \psi_2$. Therefore,

$$\int_{E} (f+g) \leq \inf_{\psi_2 \geq g} \left(\inf_{\psi_1 \geq f} \left(\int_{E} \psi_1 + \int_{E} \psi_2 \right) \right)$$
$$= \inf_{\psi_2 \geq g} \left(\int_{E} f + \int_{E} \psi_2 \right) = \int_{E} f + \int_{E} g.$$

Proof (continued). Let $\alpha < 0$. Then $\int_{E} \alpha f = \inf_{\varphi \ge \alpha f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \int_{E} \varphi = \inf_{\varphi/\alpha \le f} \left(\alpha \int_{E} \varphi/\alpha \right) = \alpha \sup_{\varphi/\alpha \le f} \int_{E} \varphi/\alpha = \alpha \int_{E} f$. Also, if $\alpha = 0$ then of course $0 = \int_{E} \alpha f = \alpha \int_{E} f = 0$.

(2) We finish the proof of linearity by considering $\alpha = \beta = 1$. Let ψ_1 and ψ_2 be simple functions for which $f \leq \psi_1$ and $g \leq \psi_2$ on E. Then $\psi_1 + \psi_2$ is simple and $f + g \leq \psi_1 + \psi_2$ on E. By Proposition 4.2 (for simple functions) $\int_E (f+g) = \inf_{\varphi \geq f+g} \int_E \varphi \leq \int_E (\psi_1 + \psi_2) = \int_E \psi_1 + \int_E \psi_2$, or $\int_E (f+g) \leq \int_E \psi_1 + \int_E \psi_2$ for all simple ψ_1, ψ_2 where $f \leq \psi_1, g \leq \psi_2$. Therefore,

$$\int_{E} (f+g) \leq \inf_{\psi_{2} \geq g} \left(\inf_{\psi_{1} \geq f} \left(\int_{E} \psi_{1} + \int_{E} \psi_{2} \right) \right)$$
$$= \inf_{\psi_{2} \geq g} \left(\int_{E} f + \int_{E} \psi_{2} \right) = \int_{E} f + \int_{E} g.$$

Proof (continued). Now to reverse this inequality. Let φ_1 and φ_2 be simple with $\varphi_1 \leq f$, $\varphi_2 \leq g$ on *E*. Then $\varphi_1 + \varphi_2 \leq f + g$ on *E* is simple.

Proof (continued). Now to reverse this inequality. Let φ_1 and φ_2 be simple with $\varphi_1 \leq f$, $\varphi_2 \leq g$ on E. Then $\varphi_1 + \varphi_2 \leq f + g$ on E is simple. So

$$\int_{E} (f+g) = \sup_{\varphi \leq f+g} \int_{E} \varphi \geq \int_{E} (\varphi_{1}+\varphi_{2}) = \int_{E} \varphi_{1} + \int_{E} \varphi_{2}.$$

Therefore

$$\int (f+g) \ge \sup_{\varphi_2 \le g} \left(\sup_{\varphi_1 \le f} \left(\int_E \varphi_1 + \int_E \varphi_2 \right) \right)$$
$$= \sup_{\varphi_2 \le g} \left(\int_E f + \int_E \varphi_2 \right) = \int_E f + \int_E g.$$

Therefore, $\int_E (f+g) = \int_E f + \int_E g$ and linearity follows.

Proof (continued). Now to reverse this inequality. Let φ_1 and φ_2 be simple with $\varphi_1 \leq f$, $\varphi_2 \leq g$ on *E*. Then $\varphi_1 + \varphi_2 \leq f + g$ on *E* is simple. So

$$\int_{E} (f+g) = \sup_{\varphi \leq f+g} \int_{E} \varphi \geq \int_{E} (\varphi_{1} + \varphi_{2}) = \int_{E} \varphi_{1} + \int_{E} \varphi_{2}.$$

Therefore

$$\int (f+g) \ge \sup_{\varphi_2 \le g} \left(\sup_{\varphi_1 \le f} \left(\int_E \varphi_1 + \int_E \varphi_2 \right) \right)$$
$$= \sup_{\varphi_2 \le g} \left(\int_E f + \int_E \varphi_2 \right) = \int_E f + \int_E g.$$

Therefore, $\int_E (f+g) = \int_E f + \int_E g$ and linearity follows.

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha,\beta\in\mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$$

Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof (continued). (3) Suppose $f \leq g$ on E. By linearity, $\int_{E} (g - f) = \int_{E} g - \int_{E} f$. Since $g - f \geq 0$ then $\int_{E} (g - f) \geq \int_{E} \varphi$ where $\varphi \equiv 0$ on E (a simple function less than g - f). So $\int_{E} (g - f) \geq 0$ and monotonicity follows.

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha,\beta\in\mathbb{R}$

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g.$$

Moreover, if $f \leq g$ on E, then $\int_E f \leq \int_E g$.

Proof (continued). (3) Suppose $f \le g$ on *E*. By linearity, $\int_E (g - f) = \int_E g - \int_E f$. Since $g - f \ge 0$ then $\int_E (g - f) \ge \int_E \varphi$ where $\varphi \equiv 0$ on *E* (a simple function less than g - f). So $\int_E (g - f) \ge 0$ and monotonicity follows.

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

Proof. Both $f \cdot \chi_A$ and $f \cdot \chi_B$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B} = f \cdot \chi_A + f \cdot \chi_B$. By Problem 4.10, for any measurable subset E_1 of E we have $\int_{E_1} f = \int_E f \cdot \chi_{E_1}$.

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

Proof. Both $f \cdot \chi_A$ and $f \cdot \chi_B$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B} = f \cdot \chi_A + f \cdot \chi_B$. By Problem 4.10, for any measurable subset E_1 of E we have $\int_{E_1} f = \int_E f \cdot \chi_{E_1}$. So by linearity (Theorem 4.5) we have

$$\int_{A\cup B} f = \int_E f \cdot \chi_{A\cup B} = \int_E (f \cdot \chi_A + f \cdot \chi_B) = \int_E f \cdot \chi_A + \int_E f \cdot \chi_B = \int_A f + \int_B f,$$

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$\int_{A\cup B} f = \int_A f + \int_B f.$$

Proof. Both $f \cdot \chi_A$ and $f \cdot \chi_B$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B} = f \cdot \chi_A + f \cdot \chi_B$. By Problem 4.10, for any measurable subset E_1 of E we have $\int_{E_1} f = \int_E f \cdot \chi_{E_1}$. So by linearity (Theorem 4.5) we have

$$\int_{A\cup B} f = \int_E f \cdot \chi_{A\cup B} = \int_E (f \cdot \chi_A + f \cdot \chi_B) = \int_E f \cdot \chi_A + \int_E f \cdot \chi_B = \int_A f + \int_B f,$$

Corollary 4.7. Let f be a bounded measurable function on a set of finite measure E. Then

$$\left|\int_{E} f\right| \leq \int_{E} |f|.$$

Proof. The function |f| is measurable by Proposition 3.7. Certainly |f| is bounded. Now $-|f| \le f \le |f|$ on E. So by linearity and monotonicity (Theorem 4.5) we have

$$-\int_{E} |f| \le \int_{E} f \le \int_{E} |f|$$
 or $\left|\int_{E} f\right| \le \int_{E} |f|,$

Corollary 4.7. Let f be a bounded measurable function on a set of finite measure E. Then

$$\left|\int_{E} f\right| \leq \int_{E} |f|.$$

Proof. The function |f| is measurable by Proposition 3.7. Certainly |f| is bounded. Now $-|f| \le f \le |f|$ on E. So by linearity and monotonicity (Theorem 4.5) we have

$$-\int_{E}|f|\leq \int_{E}f\leq \int_{E}|f|$$
 or $\left|\int_{E}f\right|\leq \int_{E}|f|,$

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure on *E*. If $\{f_n\} \rightarrow f$ uniformly on *E*, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. Since the convergence is uniform and each f_n is bounded, the limit function f is bounded (there exists $\varepsilon > 0$ and $n \in \mathbb{N}$ such that $|f_n - f| < \varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9.

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure on *E*. If $\{f_n\} \rightarrow f$ uniformly on *E*, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. Since the convergence is uniform and each f_n is bounded, the limit function f is bounded (there exists $\varepsilon > 0$ and $n \in \mathbb{N}$ such that $|f_n - f| < \varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $|f - f_n| < \varepsilon/m(E)$ on E for all $n \ge N$. By the results of this section:

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure on *E*. If $\{f_n\} \rightarrow f$ uniformly on *E*, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. Since the convergence is uniform and each f_n is bounded, the limit function f is bounded (there exists $\varepsilon > 0$ and $n \in \mathbb{N}$ such that $|f_n - f| < \varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9. Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $|f - f_n| < \varepsilon/m(E)$ on E for all $n \ge N$. By the results of this section:

Proposition 4.8 (continued)

Proposition 4.8. Let $\{f_n\}$ be a sequence of bounded measurable functions on a set of finite measure on *E*. If $\{f_n\} \rightarrow f$ uniformly on *E*, then

$$\lim_{n\to\infty}\left(\int_E f_n\right) = \int_E \left(\lim_{n\to\infty} f_n\right) = \int_E f.$$

Proof (continued).

$$\begin{aligned} \left| \int_{E} f - \int_{E} f_{n} \right| &= \left| \int_{E} (f - f_{n}) \right| \text{ by linearity (Theorem 4.5)} \\ &\leq \int_{E} |f - f_{n}| \text{ by Corollary 4.7} \\ &< \frac{\varepsilon}{m(E)} m(E) = \varepsilon. \end{aligned}$$

Therefore $\lim_{n\to\infty} (\int_E f_n) = \int_E f$.

Bounded Convergence Theorem.

Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E, that is, there is a number $M \ge 0$ for which $|f_n| \le M$ on E for all n. If $\{f_n\} \to f$ pointwise on E, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. First, f is measurable by Proposition 3.9. Since $|f_n(x)| \le M$ for all $x \in E$ and so $|f(x)| \le M$ for all $x \in E$.

Bounded Convergence Theorem.

Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E, that is, there is a number $M \ge 0$ for which $|f_n| \le M$ on E for all n. If $\{f_n\} \to f$ pointwise on E, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. First, *f* is measurable by Proposition 3.9. Since $|f_n(x)| \le M$ for all $x \in E$ and so $|f(x)| \le M$ for all $x \in E$. For any measurable $A \subset E$ and $n \in \mathbb{N}$, we have

$$\int_{E} f_n - \int_{E} f = \int_{E} (f_n - f) \text{ by linearity (Theorem 4.5)}$$
$$= \int_{A} (f_n - f) + \int_{E \setminus A} (f_n - f) \text{ by Corollary 4.6.}$$

Bounded Convergence Theorem.

Let $\{f_n\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\{f_n\}$ is uniformly pointwise bounded on E, that is, there is a number $M \ge 0$ for which $|f_n| \le M$ on E for all n. If $\{f_n\} \to f$ pointwise on E, then

$$\lim_{n\to\infty}\left(\int_E f_n\right)=\int_E\left(\lim_{n\to\infty}f_n\right)=\int_E f.$$

Proof. First, *f* is measurable by Proposition 3.9. Since $|f_n(x)| \le M$ for all $x \in E$ and so $|f(x)| \le M$ for all $x \in E$. For any measurable $A \subset E$ and $n \in \mathbb{N}$, we have

$$\int_{E} f_{n} - \int_{E} f = \int_{E} (f_{n} - f) \text{ by linearity (Theorem 4.5)}$$
$$= \int_{A} (f_{n} - f) + \int_{E \setminus A} (f_{n} - f) \text{ by Corollary 4.6.}$$

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$\int_{E} f_n - \int_{E} f \bigg| = \bigg| \int_{E} (f_n - f) \bigg| \le \int_{E} |f_n - f| = \int_{A} |f_n - f| + \int_{E \setminus A} |f_n - f|$$

$$\leq \int_{A} |f_n - f| + \int_{E \setminus A} 2M = \int_{A} |f_n - f| + 2Mm(E \setminus A).$$
(7)

Let $\varepsilon > 0$. Since $m(E) < \infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\{f_n\} \to f$ uniformly on A and $m(E \setminus A) < \varepsilon/(4M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $|f_n - f| < \frac{\varepsilon}{2m(A)}$ on A for all $n \ge N$.

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$\left|\int_{E} f_n - \int_{E} f\right| = \left|\int_{E} (f_n - f)\right| \le \int_{E} |f_n - f| = \int_{A} |f_n - f| + \int_{E \setminus A} |f_n - f|$$

$$\leq \int_{A} |f_n - f| + \int_{E \setminus A} 2M = \int_{A} |f_n - f| + 2Mm(E \setminus A).$$
(7)

Let $\varepsilon > 0$. Since $m(E) < \infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\{f_n\} \to f$ uniformly on A and $m(E \setminus A) < \varepsilon/(4M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $|f_n - f| < \frac{\varepsilon}{2m(A)}$ on A for all $n \ge N$. So for $n \ge N$, equation (7) implies

$$\left|\int_{E} f_{n} - \int_{E} f\right| < \frac{\varepsilon}{2m(A)}m(A) + 2M m(E \setminus A) < \frac{\varepsilon}{2} + 2M\frac{\varepsilon}{4M} = \varepsilon.$$

Real Analysis

So $\lim_{n\to\infty} (\int_E f_n) = \int_E (\lim_{n\to\infty} f_n) = \int_E f$.

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$\int_{E} f_n - \int_{E} f \bigg| = \bigg| \int_{E} (f_n - f) \bigg| \leq \int_{E} |f_n - f| = \int_{A} |f_n - f| + \int_{E \setminus A} |f_n - f|$$

$$\leq \int_{A} |f_n - f| + \int_{E \setminus A} 2M = \int_{A} |f_n - f| + 2Mm(E \setminus A).$$
(7)

Let $\varepsilon > 0$. Since $m(E) < \infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\{f_n\} \to f$ uniformly on A and $m(E \setminus A) < \varepsilon/(4M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $|f_n - f| < \frac{\varepsilon}{2m(A)}$ on A for all $n \ge N$. So for $n \ge N$, equation (7) implies

$$\left|\int_{E}f_{n}-\int_{E}f\right|<\frac{\varepsilon}{2m(A)}m(A)+2M\,m(E\setminus A)<\frac{\varepsilon}{2}+2M\frac{\varepsilon}{4M}=\varepsilon.$$

So $\lim_{n\to\infty} (\int_E f_n) = \int_E (\lim_{n\to\infty} f_n) = \int_E f$.