Real Analysis

Chapter 4. Lebesgue Integration

4.2. The Lebesgue Integral of a Bounded Measurable Function over a Set of Finite Measure-Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma 4.1
(2) Proposition 4.2. Linearity and Monotonicity of Integration
(3) Theorem 4.3
(4) Theorem 4.4
(5) Theorem 4.5. Linearity and Monotonicity
(6) Corollary 4.6
(7) Corollary 4.7
(8) Proposition 4.8
(9) Bounded Convergence Theorem

Lemma 4.1

Lemma 4.1. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \leq i \leq n$, let a_{i} be a real number. If $\varphi=\sum a_{i} \chi_{E_{i}}$ on E then $\int_{E} \varphi=\sum a_{i} m\left(E_{i}\right)$.

Proof. Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ be the distinct values taken by φ. For $1 \leq j \leq m$, set $A_{j}=\left\{x \in E \mid \varphi(x)=\lambda_{j}\right\}$.

Lemma 4.1

Lemma 4.1. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \leq i \leq n$, let a_{i} be a real number. If $\varphi=\sum a_{i} \chi_{E_{i}}$ on E then $\int_{E} \varphi=\sum a_{i} m\left(E_{i}\right)$.

Proof. Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ be the distinct values taken by φ. For $1 \leq j \leq m$, set $A_{j}=\left\{x \in E \mid \varphi(x)=\lambda_{j}\right\}$. Then the canonical
representation of φ is $\varphi=\sum_{j=1}^{m} \lambda_{j} \chi_{A_{j}}$ and so $\int_{E} \varphi=\sum_{j=1}^{m} \lambda_{j} m\left(A_{j}\right)$. For $1 \leq j \leq m$, let $l_{j}=\left\{i \in\{1,2, \ldots, n\} \mid a_{i}=\lambda_{j}\right\}$. Then $\{1,2, \ldots, n\}=\cup_{j=1}^{m} l_{j}$.

Lemma 4.1

Lemma 4.1. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \leq i \leq n$, let a_{i} be a real number. If $\varphi=\sum a_{i} \chi_{E_{i}}$ on E then $\int_{E} \varphi=\sum a_{i} m\left(E_{i}\right)$.

Proof. Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ be the distinct values taken by φ. For $1 \leq j \leq m$, set $A_{j}=\left\{x \in E \mid \varphi(x)=\lambda_{j}\right\}$. Then the canonical representation of φ is $\varphi=\sum_{j=1}^{m} \lambda_{j} \chi_{A_{j}}$ and so $\int_{E} \varphi=\sum_{j=1}^{m} \lambda_{j} m\left(A_{j}\right)$. For $1 \leq j \leq m$, let $l_{j}=\left\{i \in\{1,2, \ldots, n\} \mid a_{i}=\lambda_{j}\right\}$. Then $\{1,2, \ldots, n\}=\cup_{j=1}^{m} l_{j}$. By finite additivity, $m\left(A_{j}\right)=\sum_{i \in l_{j}} m\left(E_{i}\right)$ for all $1 \leq j \leq m$. Therefore

Lemma 4.1

Lemma 4.1. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a finite disjoint collection of measurable subsets of a set of finite measure E. For $1 \leq i \leq n$, let a_{i} be a real number. If $\varphi=\sum a_{i} \chi_{E_{i}}$ on E then $\int_{E} \varphi=\sum a_{i} m\left(E_{i}\right)$.

Proof. Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$ be the distinct values taken by φ. For $1 \leq j \leq m$, set $A_{j}=\left\{x \in E \mid \varphi(x)=\lambda_{j}\right\}$. Then the canonical representation of φ is $\varphi=\sum_{j=1}^{m} \lambda_{j} \chi_{A_{j}}$ and so $\int_{E} \varphi=\sum_{j=1}^{m} \lambda_{j} m\left(A_{j}\right)$. For $1 \leq j \leq m$, let $l_{j}=\left\{i \in\{1,2, \ldots, n\} \mid a_{i}=\lambda_{j}\right\}$. Then $\{1,2, \ldots, n\}=\smile_{j=1}^{m} I_{j}$. By finite additivity, $m\left(A_{j}\right)=\sum_{i \in l_{j}} m\left(E_{i}\right)$ for all $1 \leq j \leq m$. Therefore

$$
\begin{gathered}
\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)=\sum_{j=1}^{m}\left[\sum_{i \in I_{j}} a_{i} m\left(E_{i}\right)\right] \\
=\sum_{j=1}^{m} \lambda_{j}\left[\sum_{i \in I_{j}} m\left(E_{i}\right)\right]=\sum_{j=1}^{m} \lambda_{j} m\left(A_{j}\right)=\int_{E} \varphi
\end{gathered}
$$

Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure E. Then for any α, β

$$
\int_{E}(\alpha \varphi+\beta \psi)=\alpha \int_{E} \varphi+\beta \int_{E} \psi
$$

and if $\varphi \leq \psi$ on E then $\int_{E} \varphi \leq \int_{E} \psi$.
Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\left\{E_{i}\right\}_{i=1}^{n}$ of measurable subsets of E where $\cup E_{i}=E$ and such that φ and ψ are both constant on each E_{i}.

Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration. Let φ and ψ be simple functions defined on a set of finite measure E. Then for any α, β

$$
\int_{E}(\alpha \varphi+\beta \psi)=\alpha \int_{E} \varphi+\beta \int_{E} \psi
$$

and if $\varphi \leq \psi$ on E then $\int_{E} \varphi \leq \int_{E} \psi$.
Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\left\{E_{i}\right\}_{i=1}^{n}$ of measurable subsets of E where $\cup E_{i}=E$ and such that φ and ψ are both constant on each E_{i}. a_{i} and b_{i}, respectively, denote the values of φ and ψ on $E_{i}(1 \leq i \leq n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_{i} 's may not be distinct and the b_{i} 's may not be distinct) $\operatorname{are} \varphi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ and $\psi=\sum_{i=1}^{n} b_{i} \chi_{E_{i}}$

Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration.
Let φ and ψ be simple functions defined on a set of finite measure E.
Then for any α, β

$$
\int_{E}(\alpha \varphi+\beta \psi)=\alpha \int_{E} \varphi+\beta \int_{E} \psi
$$

and if $\varphi \leq \psi$ on E then $\int_{E} \varphi \leq \int_{E} \psi$.
Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\left\{E_{i}\right\}_{i=1}^{n}$ of measurable subsets of E where $\cup E_{i}=E$ and such that φ and ψ are both constant on each E_{i}. Let a_{i} and b_{i}, respectively, denote the values of φ and ψ on $E_{i}(1 \leq i \leq n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_{i} 's may not be distinct and the b_{i} 's may not be distinct) are $\varphi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ and $\psi=\sum_{i=1}^{n} b_{i} \chi_{E_{i}}$. So by Lemma 4.1,

Proposition 4.2

Proposition 4.2. Linearity and Monotonicity of Integration.
Let φ and ψ be simple functions defined on a set of finite measure E.
Then for any α, β

$$
\int_{E}(\alpha \varphi+\beta \psi)=\alpha \int_{E} \varphi+\beta \int_{E} \psi
$$

and if $\varphi \leq \psi$ on E then $\int_{E} \varphi \leq \int_{E} \psi$.
Proof. Since both φ and ψ take on a finite number of values on E, we can choose a finite disjoint collection $\left\{E_{i}\right\}_{i=1}^{n}$ of measurable subsets of E where $\cup E_{i}=E$ and such that φ and ψ are both constant on each E_{i}. Let a_{i} and b_{i}, respectively, denote the values of φ and ψ on $E_{i}(1 \leq i \leq n)$. Then representations of φ and ψ (though maybe not the canonical representations since the a_{i} 's may not be distinct and the b_{i} 's may not be distinct) are $\varphi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$ and $\psi=\sum_{i=1}^{n} b_{i} \chi_{E_{i}}$. So by Lemma 4.1, $\int_{E} \varphi=\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)$ and $\int_{E} \psi=\sum_{i=1}^{n} b_{i} m\left(E_{i}\right)$.

Proposition 4.2

Proof (continued). The simple function $\alpha \varphi+\beta \psi$ takes on the value $\alpha a_{i}+\beta b_{i}$ on E_{i} and so by Lemma 4.1

$$
\begin{gathered}
\int_{E}(\alpha \varphi+\beta \psi)=\int_{E} \sum_{i=1}^{n}\left(\alpha a_{i}+\beta b_{i}\right) \chi_{E_{i}}=\sum_{i=1}^{n}\left(\alpha a_{i}+\beta b_{i}\right) m\left(E_{i}\right) \\
=\alpha \sum_{i=1}^{n} a_{i} m\left(E_{i}\right)+\beta \sum_{i=1}^{n} b_{i} m\left(E_{i}\right)=\alpha \int_{E} \varphi+\beta \int_{E} \psi .
\end{gathered}
$$

To prove monotonicity, let $\varphi \leq \psi$ on E and define $\eta=\psi-\varphi$ on E. By the linearity above, $\int_{E} \psi-\int_{E} \varphi=\int_{E}(\psi-\varphi)=\int_{E} \eta \geq 0$ since η is a nonnegative simple function on E (i.e., $\int_{E} \eta$ is a sum of nonnegative values times nonnegative measures).

Proposition 4.2

Proof (continued). The simple function $\alpha \varphi+\beta \psi$ takes on the value $\alpha a_{i}+\beta b_{i}$ on E_{i} and so by Lemma 4.1

$$
\begin{gathered}
\int_{E}(\alpha \varphi+\beta \psi)=\int_{E} \sum_{i=1}^{n}\left(\alpha a_{i}+\beta b_{i}\right) \chi_{E_{i}}=\sum_{i=1}^{n}\left(\alpha a_{i}+\beta b_{i}\right) m\left(E_{i}\right) \\
=\alpha \sum_{i=1}^{n} a_{i} m\left(E_{i}\right)+\beta \sum_{i=1}^{n} b_{i} m\left(E_{i}\right)=\alpha \int_{E} \varphi+\beta \int_{E} \psi .
\end{gathered}
$$

To prove monotonicity, let $\varphi \leq \psi$ on E and define $\eta=\psi-\varphi$ on E. By the linearity above, $\int_{E} \psi-\int_{E} \varphi=\int_{E}(\psi-\varphi)=\int_{E} \eta \geq 0$ since η is a nonnegative simple function on E (i.e., $\int_{E} \eta$ is a sum of nonnegative values times nonnegative measures).

Theorem 4.3

Theorem 4.3. Let f be a bounded function defined on $[a, b]$. If f is Riemann integrable over $[a, b]$ then it is Lebesgue integrable over $[a, b]$ and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper and lower Riemann integrals are defined in terms of step functions. Since step functions are also simple functions,
$R \int_{a}^{b} f(x) d x=$ s a step function
$\left\{\int_{a}^{b} s\right\} \leq \sup _{\varphi \leq f}\left\{\int_{a}^{b} \varphi\right\}=\int_{[a, b]} f$
φ simple

If f is Riemann integrable, then the inequalities must be equalities and the Riemann integral equals the Lebesgue integral, as claimed.

Theorem 4.3

Theorem 4.3. Let f be a bounded function defined on $[a, b]$. If f is Riemann integrable over $[a, b]$ then it is Lebesgue integrable over $[a, b]$ and the two integrals are equal.

Proof. Recall (see the Riemann-Lebesgue Theorem handout) that upper and lower Riemann integrals are defined in terms of step functions. Since step functions are also simple functions,

$$
\begin{aligned}
& R \underline{\int_{a}^{b}} f(x) d x=\sup _{s \leq f}^{s \leq f}\left\{\int_{a}^{b} s\right\} \leq \sup _{\substack{\varphi \leq f \\
\varphi \text { simplep function }}}\left\{\int_{a}^{b} \varphi\right\}=\underline{\int_{[a, b]} f} \\
& \leq \overline{\int_{[a, b]} f}=\inf _{\psi \geq f}\left\{\int_{a}^{b} \psi\right\} \leq \quad \inf _{S \geq f} \quad\left\{\int_{a}^{b} S\right\}=R \int_{a}^{b} f(x) d x . \\
& \psi \text { simple } \quad S \text { a step function }
\end{aligned}
$$

If f is Riemann integrable, then the inequalities must be equalities and the Riemann integral equals the Lebesgue integral, as claimed.

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon=1 / n$ there are simple functions φ_{n} and ψ_{n} on E for which $\varphi_{n} \leq f \leq \psi_{n}$ on E and $0 \leq \psi_{n}-\varphi_{n} \leq 1 / n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n}=\int_{E}\left(\psi_{n}-\varphi_{n}\right) \leq \frac{1}{n} m(E)$.

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon=1 / n$ there are simple functions φ_{n} and ψ_{n} on E for which $\varphi_{n} \leq f \leq \psi_{n}$ on E and $0 \leq \psi_{n}-\varphi_{n} \leq 1 / n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n}=\int_{E}\left(\psi_{n}-\varphi_{n}\right) \leq \frac{1}{n} m(E)$.
However,

for all $n \in \mathbb{N}$.

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon=1 / n$ there are simple functions φ_{n} and ψ_{n} on E for which $\varphi_{n} \leq f \leq \psi_{n}$ on E and $0 \leq \psi_{n}-\varphi_{n} \leq 1 / n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n}=\int_{E}\left(\psi_{n}-\varphi_{n}\right) \leq \frac{1}{n} m(E)$. However,

$$
\begin{gathered}
0 \leq \int_{E} f-\underline{\int_{E}} f=\inf \left\{\int_{E} \psi \mid \psi \text { is simple, } \psi \geq f\right\} \\
-\sup \left\{\int_{E} \varphi \mid \varphi \text { is simple, } \varphi \leq f\right\} \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n} \leq \frac{1}{n} m(E)
\end{gathered}
$$

for all $n \in \mathbb{N}$. Since $m(E)<\infty, 0 \leq \int_{E} f-\int_{E} f \leq 0$ and so $\int_{E} f=\int_{E} f$ and f is Lebesgue integrable on E.

Theorem 4.4

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable on E.

Proof. Let $n \in \mathbb{N}$. By the Simple Approximation Lemma, for $\varepsilon=1 / n$ there are simple functions φ_{n} and ψ_{n} on E for which $\varphi_{n} \leq f \leq \psi_{n}$ on E and $0 \leq \psi_{n}-\varphi_{n} \leq 1 / n$ on E. By monotonicity and linearity for simple functions (Proposition 4.2) $0 \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n}=\int_{E}\left(\psi_{n}-\varphi_{n}\right) \leq \frac{1}{n} m(E)$. However,

$$
\begin{gathered}
0 \leq \int_{E} f-\underline{\int_{E}} f=\inf \left\{\int_{E} \psi \mid \psi \text { is simple, } \psi \geq f\right\} \\
-\sup \left\{\int_{E} \varphi \mid \varphi \text { is simple, } \varphi \leq f\right\} \leq \int_{E} \psi_{n}-\int_{E} \varphi_{n} \leq \frac{1}{n} m(E)
\end{gathered}
$$

for all $n \in \mathbb{N}$. Since $m(E)<\infty, 0 \leq \overline{\int_{E}} f-\underline{\int_{E}} f \leq 0$ and so $\overline{\int_{E}} f=\underline{\int_{E}} f$ and f is Lebesgue integrable on E.

Theorem 4.5

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g
$$

Moreover, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. By Theorem 4.4, $\alpha f+\beta g$ is integrable over E. We present the proof in 3 steps.

Theorem 4.5

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g
$$

Moreover, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. By Theorem 4.4, $\alpha f+\beta g$ is integrable over E. We present the proof in 3 steps.
(1) If ψ is a simple function, then for $\alpha \neq 0, \alpha \psi$ is also simple. Let $\alpha>0$. Then

Theorem 4.5

Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g
$$

Moreover, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. By Theorem 4.4, $\alpha f+\beta g$ is integrable over E. We present the proof in 3 steps.
(1) If ψ is a simple function, then for $\alpha \neq 0, \alpha \psi$ is also simple. Let $\alpha>0$. Then

$$
\int_{E} \alpha f=\inf _{\psi \geq \alpha f} \int_{E} \psi=\inf _{\psi / \alpha \geq f} \int_{E} \psi=\alpha \inf _{\psi / \alpha \geq f} \int_{E} \psi / \alpha=\alpha \int_{E} f
$$

Theorem 4.5 (continued 1)

Proof (continued). Let $\alpha<0$. Then $\int_{E} \alpha f=\inf _{\varphi \geq \alpha f} \int_{E} \varphi=\inf _{\varphi / \alpha \leq f} \int_{E} \varphi=$ $\inf _{\varphi / \alpha \leq f}\left(\alpha \int_{E} \varphi / \alpha\right)=\alpha \sup _{\varphi / \alpha \leq f} \int_{E} \varphi / \alpha=\alpha \int_{E} f$. Also, if $\alpha=0$ then of course $0=\int_{E} \alpha f=\alpha \int_{E} f=0$.
(2) We finish the proof of linearity by considering $\alpha=\beta=1$. Let ψ_{1} and ψ_{2} be simple functions for which $f \leq \psi_{1}$ and $g \leq \psi_{2}$ on E.

Theorem 4.5 (continued 1)

Proof (continued). Let $\alpha<0$. Then $\int_{E} \alpha f=\inf _{\varphi \geq \alpha f} \int_{E} \varphi=\inf _{\varphi / \alpha \leq f} \int_{E} \varphi=$ $\inf _{\varphi / \alpha \leq f}\left(\alpha \int_{E} \varphi / \alpha\right)=\alpha \sup _{\varphi / \alpha \leq f} \int_{E} \varphi / \alpha=\alpha \int_{E} f$. Also, if $\alpha=0$ then of course $0=\int_{E} \alpha f=\alpha \int_{E} f=0$.
(2) We finish the proof of linearity by considering $\alpha=\beta=1$. Let ψ_{1} and ψ_{2} be simple functions for which $f \leq \psi_{1}$ and $g \leq \psi_{2}$ on E. Then $\psi_{1}+\psi_{2}$ is simple and $f+g \leq \psi_{1}+\psi_{2}$ on E. By Proposition 4.2 (for simple functions) $\int_{E}(f+g)=\inf _{\varphi \geq f+g} \int_{E} \varphi \leq \int_{E}\left(\psi_{1}+\psi_{2}\right)=\int_{E} \psi_{1}+\int_{E} \psi_{2}$, or $\int_{E}(f+g) \leq \int_{E} \psi_{1}+\int_{E} \psi_{2}$ for all simple ψ_{1}, ψ_{2} where $f \leq \psi_{1}, g \leq \psi_{2}$.

Theorem 4.5 (continued 1)

Proof (continued). Let $\alpha<0$. Then $\int_{E} \alpha f=\inf _{\varphi \geq \alpha f} \int_{E} \varphi=\inf _{\varphi / \alpha \leq f} \int_{E} \varphi=$ $\inf _{\varphi / \alpha \leq f}\left(\alpha \int_{E} \varphi / \alpha\right)=\alpha \sup _{\varphi / \alpha \leq f} \int_{E} \varphi / \alpha=\alpha \int_{E} f$. Also, if $\alpha=0$ then of course $0=\int_{E} \alpha f=\alpha \int_{E} f=0$.
(2) We finish the proof of linearity by considering $\alpha=\beta=1$. Let ψ_{1} and ψ_{2} be simple functions for which $f \leq \psi_{1}$ and $g \leq \psi_{2}$ on E. Then $\psi_{1}+\psi_{2}$ is simple and $f+g \leq \psi_{1}+\psi_{2}$ on E. By Proposition 4.2 (for simple functions) $\int_{E}(f+g)=\inf _{\varphi \geq f+g} \int_{E} \varphi \leq \int_{E}\left(\psi_{1}+\psi_{2}\right)=\int_{E} \psi_{1}+\int_{E} \psi_{2}$, or $\int_{E}(f+g) \leq \int_{E} \psi_{1}+\int_{E} \psi_{2}$ for all simple ψ_{1}, ψ_{2} where $f \leq \psi_{1}, g \leq \psi_{2}$.

Therefore,

Theorem 4.5 (continued 1)

Proof (continued). Let $\alpha<0$. Then $\int_{E} \alpha f=\inf _{\varphi \geq \alpha f} \int_{E} \varphi=\inf _{\varphi / \alpha \leq f} \int_{E} \varphi=$ $\inf _{\varphi / \alpha \leq f}\left(\alpha \int_{E} \varphi / \alpha\right)=\alpha \sup _{\varphi / \alpha \leq f} \int_{E} \varphi / \alpha=\alpha \int_{E} f$. Also, if $\alpha=0$ then of course $0=\int_{E} \alpha f=\alpha \int_{E} f=0$.
(2) We finish the proof of linearity by considering $\alpha=\beta=1$. Let ψ_{1} and ψ_{2} be simple functions for which $f \leq \psi_{1}$ and $g \leq \psi_{2}$ on E. Then $\psi_{1}+\psi_{2}$ is simple and $f+g \leq \psi_{1}+\psi_{2}$ on E. By Proposition 4.2 (for simple functions) $\int_{E}(f+g)=\inf _{\varphi \geq f+g} \int_{E} \varphi \leq \int_{E}\left(\psi_{1}+\psi_{2}\right)=\int_{E} \psi_{1}+\int_{E} \psi_{2}$, or $\int_{E}(f+g) \leq \int_{E} \psi_{1}+\int_{E} \psi_{2}$ for all simple ψ_{1}, ψ_{2} where $f \leq \psi_{1}, g \leq \psi_{2}$. Therefore,

$$
\begin{gathered}
\int_{E}(f+g) \leq \inf _{\psi_{2} \geq g}\left(\inf _{\psi_{1} \geq f}\left(\int_{E} \psi_{1}+\int_{E} \psi_{2}\right)\right) \\
=\inf _{\psi_{2} \geq g}\left(\int_{E} f+\int_{E} \psi_{2}\right)=\int_{E} f+\int_{E} g .
\end{gathered}
$$

Theorem 4.5 (continued 2)

Proof (continued). Now to reverse this inequality. Let φ_{1} and φ_{2} be simple with $\varphi_{1} \leq f, \varphi_{2} \leq g$ on E. Then $\varphi_{1}+\varphi_{2} \leq f+g$ on E is simple.

Theorem 4.5 (continued 2)

Proof (continued). Now to reverse this inequality. Let φ_{1} and φ_{2} be simple with $\varphi_{1} \leq f, \varphi_{2} \leq g$ on E. Then $\varphi_{1}+\varphi_{2} \leq f+g$ on E is simple.
So

$$
\int_{E}(f+g)=\sup _{\varphi \leq f+g} \int_{E} \varphi \geq \int_{E}\left(\varphi_{1}+\varphi_{2}\right)=\int_{E} \varphi_{1}+\int_{E} \varphi_{2} .
$$

Therefore

$$
\begin{gathered}
\int(f+g) \geq \sup _{\varphi_{2} \leq g}\left(\sup _{\varphi_{1} \leq f}\left(\int_{E} \varphi_{1}+\int_{E} \varphi_{2}\right)\right) \\
=\sup _{\varphi_{2} \leq g}\left(\int_{E} f+\int_{E} \varphi_{2}\right)=\int_{E} f+\int_{E} g .
\end{gathered}
$$

Therefore, $\int_{E}(f+g)=\int_{E} f+\int_{E} g$ and linearity follows.

Theorem 4.5 (continued 2)

Proof (continued). Now to reverse this inequality. Let φ_{1} and φ_{2} be simple with $\varphi_{1} \leq f, \varphi_{2} \leq g$ on E. Then $\varphi_{1}+\varphi_{2} \leq f+g$ on E is simple.
So

$$
\int_{E}(f+g)=\sup _{\varphi \leq f+g} \int_{E} \varphi \geq \int_{E}\left(\varphi_{1}+\varphi_{2}\right)=\int_{E} \varphi_{1}+\int_{E} \varphi_{2}
$$

Therefore

$$
\begin{gathered}
\int(f+g) \geq \sup _{\varphi_{2} \leq g}\left(\sup _{\varphi_{1} \leq f}\left(\int_{E} \varphi_{1}+\int_{E} \varphi_{2}\right)\right) \\
\quad=\sup _{\varphi_{2} \leq g}\left(\int_{E} f+\int_{E} \varphi_{2}\right)=\int_{E} f+\int_{E} g .
\end{gathered}
$$

Therefore, $\int_{E}(f+g)=\int_{E} f+\int_{E} g$ and linearity follows.

Theorem 4.5 (continued 3)

Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g .
$$

Moreover, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.

Proof (continued). (3) Suppose $f \leq g$ on E. By linearity, $\int_{E}(g-f)=\int_{E} g-\int_{E} f$. Since $g-f \geq 0$ then $\int_{E}(g-f) \geq \int_{E} \varphi$ where $\varphi \equiv 0$ on E (a simple function less than $g-f)$. So $\int_{E}(g-f) \geq 0$ and monotonicity follows.

Theorem 4.5 (continued 3)

Theorem 4.5. Linearity and Monotonicity.
Let f and g be bounded measurable functions on a set of finite measure E. Then for all $\alpha, \beta \in \mathbb{R}$

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g .
$$

Moreover, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.

Proof (continued). (3) Suppose $f \leq g$ on E. By linearity, $\int_{E}(g-f)=\int_{E} g-\int_{E} f$. Since $g-f \geq 0$ then $\int_{E}(g-f) \geq \int_{E} \varphi$ where $\varphi \equiv 0$ on E (a simple function less than $g-f)$. So $\int_{E}(g-f) \geq 0$ and monotonicity follows.

Corollary 4.6

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

Proof. Both $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$. By Problem 4.10, for any measurable subset E_{1} of E we have $\int_{E_{1}} f=\int_{E} f \cdot \chi_{E_{1}}$.

Corollary 4.6

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

Proof. Both $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$. By Problem 4.10, for any measurable subset E_{1} of E we have $\int_{E_{1}} f=\int_{E} f \cdot \chi_{E_{1}}$. So by linearity (Theorem 4.5) we have

Corollary 4.6

Corollary 4.6. Let f be a bounded measurable function on a set E of finite measure. Suppose A and B are measurable disjoint subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

Proof. Both $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are bounded measurable functions on E. Since A and B are disjoint then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$. By Problem 4.10, for any measurable subset E_{1} of E we have $\int_{E_{1}} f=\int_{E} f \cdot \chi_{E_{1}}$. So by linearity (Theorem 4.5) we have
$\int_{A \cup B} f=\int_{E} f \cdot \chi_{A \cup B}=\int_{E}\left(f \cdot \chi_{A}+f \cdot \chi_{B}\right)=\int_{E} f \cdot \chi_{A}+\int_{E} f \cdot \chi_{B}=\int_{A} f+\int_{B} f$, as claimed.

Corollary 4.7

Corollary 4.7. Let f be a bounded measurable function on a set of finite measure E. Then

$$
\left|\int_{E} f\right| \leq \int_{E}|f| .
$$

Proof. The function $|f|$ is measurable by Proposition 3.7. Certainly $|f|$ is bounded. Now $-|f| \leq f \leq|f|$ on E. So by linearity and monotonicity
(Theorem 4.5) we have

$$
-\int_{E}|f| \leq \int_{E} f \leq \int_{E}|f| \text { or }\left|\int_{E} f\right| \leq \int_{E}|f|,
$$

as claimed.

Corollary 4.7

Corollary 4.7. Let f be a bounded measurable function on a set of finite measure E. Then

$$
\left|\int_{E} f\right| \leq \int_{E}|f| .
$$

Proof. The function $|f|$ is measurable by Proposition 3.7. Certainly $|f|$ is bounded. Now $-|f| \leq f \leq|f|$ on E. So by linearity and monotonicity (Theorem 4.5) we have

$$
-\int_{E}|f| \leq \int_{E} f \leq \int_{E}|f| \text { or }\left|\int_{E} f\right| \leq \int_{E}|f|,
$$

as claimed.

Proposition 4.8

Proposition 4.8. Let $\left\{f_{n}\right\}$ be a sequence of bounded measurable functions on a set of finite measure on E. If $\left\{f_{n}\right\} \rightarrow f$ uniformly on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f
$$

Proof. Since the convergence is uniform and each f_{n} is bounded, the limit function f is bounded (there exists $\varepsilon>0$ and $n \in \mathbb{N}$ such that $\left|f_{n}-f\right|<\varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9.

Proposition 4.8

Proposition 4.8. Let $\left\{f_{n}\right\}$ be a sequence of bounded measurable functions on a set of finite measure on E. If $\left\{f_{n}\right\} \rightarrow f$ uniformly on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. Since the convergence is uniform and each f_{n} is bounded, the limit function f is bounded (there exists $\varepsilon>0$ and $n \in \mathbb{N}$ such that $\left|f_{n}-f\right|<\varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9. Let $\varepsilon>0$. Choose $N \in \mathbb{N}$ such that $\left|f-f_{n}\right|<\varepsilon / m(E)$ on E for all $n \geq N$. By the results of this section:

Proposition 4.8

Proposition 4.8. Let $\left\{f_{n}\right\}$ be a sequence of bounded measurable functions on a set of finite measure on E. If $\left\{f_{n}\right\} \rightarrow f$ uniformly on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. Since the convergence is uniform and each f_{n} is bounded, the limit function f is bounded (there exists $\varepsilon>0$ and $n \in \mathbb{N}$ such that $\left|f_{n}-f\right|<\varepsilon$ on E). Since f is the pointwise limit of a sequence of measurable functions, then f is measurable by Proposition 3.9. Let $\varepsilon>0$. Choose $N \in \mathbb{N}$ such that $\left|f-f_{n}\right|<\varepsilon / m(E)$ on E for all $n \geq N$. By the results of this section:

Proposition 4.8 (continued)

Proposition 4.8. Let $\left\{f_{n}\right\}$ be a sequence of bounded measurable functions on a set of finite measure on E. If $\left\{f_{n}\right\} \rightarrow f$ uniformly on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof (continued).

$$
\begin{aligned}
\left|\int_{E} f-\int_{E} f_{n}\right| & =\left|\int_{E}\left(f-f_{n}\right)\right| \text { by linearity (Theorem 4.5) } \\
& \leq \int_{E}\left|f-f_{n}\right| \text { by Corollary 4.7 } \\
& <\frac{\varepsilon}{m(E)} m(E)=\varepsilon .
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E} f$.

Bounded Convergence Theorem

Bounded Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\left\{f_{n}\right\}$ is uniformly pointwise bounded on E, that is, there is a number $M \geq 0$ for which $\left|f_{n}\right| \leq M$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. First, f is measurable by Proposition 3.9. Since $\left|f_{n}(x)\right| \leq M$ for all $x \in E$ and so $|f(x)| \leq M$ for all $x \in E$.

Bounded Convergence Theorem

Bounded Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\left\{f_{n}\right\}$ is uniformly pointwise bounded on E, that is, there is a number $M \geq 0$ for which $\left|f_{n}\right| \leq M$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. First, f is measurable by Proposition 3.9. Since $\left|f_{n}(x)\right| \leq M$ for all $x \in E$ and so $|f(x)| \leq M$ for all $x \in E$. For any measurable $A \subset E$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\int_{E} f_{n}-\int_{E} f & =\int_{E}\left(f_{n}-f\right) \text { by linearity (Theorem 4.5) } \\
& =\int_{A}\left(f_{n}-f\right)+\int_{E \backslash A}\left(f_{n}-f\right) \text { by Corollary 4.6. }
\end{aligned}
$$

Bounded Convergence Theorem

Bounded Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a set of finite measure E. Suppose $\left\{f_{n}\right\}$ is uniformly pointwise bounded on E, that is, there is a number $M \geq 0$ for which $\left|f_{n}\right| \leq M$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise on E, then

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f
$$

Proof. First, f is measurable by Proposition 3.9. Since $\left|f_{n}(x)\right| \leq M$ for all $x \in E$ and so $|f(x)| \leq M$ for all $x \in E$. For any measurable $A \subset E$ and $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\int_{E} f_{n}-\int_{E} f & =\int_{E}\left(f_{n}-f\right) \text { by linearity (Theorem 4.5) } \\
& =\int_{A}\left(f_{n}-f\right)+\int_{E \backslash A}\left(f_{n}-f\right) \text { by Corollary 4.6. }
\end{aligned}
$$

Bounded Convergence Theorem

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$
\begin{gather*}
\left|\int_{E} f_{n}-\int_{E} f\right|=\left|\int_{E}\left(f_{n}-f\right)\right| \leq \int_{E}\left|f_{n}-f\right|=\int_{A}\left|f_{n}-f\right|+\int_{E \backslash A}\left|f_{n}-f\right| \\
\leq \int_{A}\left|f_{n}-f\right|+\int_{E \backslash A} 2 M=\int_{A}\left|f_{n}-f\right|+2 M m(E \backslash A) \tag{7}
\end{gather*}
$$

Let $\varepsilon>0$. Since $m(E)<\infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\left\{f_{n}\right\} \rightarrow f$ uniformly on A and $m(E \backslash A)<\varepsilon /(4 M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $\left|f_{n}-f\right|<\frac{\varepsilon}{2 m(A)}$ on A for all $n \geq N$.

Bounded Convergence Theorem

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$
\begin{gather*}
\left|\int_{E} f_{n}-\int_{E} f\right|=\left|\int_{E}\left(f_{n}-f\right)\right| \leq \int_{E}\left|f_{n}-f\right|=\int_{A}\left|f_{n}-f\right|+\int_{E \backslash A}\left|f_{n}-f\right| \\
\leq \int_{A}\left|f_{n}-f\right|+\int_{E \backslash A} 2 M=\int_{A}\left|f_{n}-f\right|+2 M m(E \backslash A) \tag{7}
\end{gather*}
$$

Let $\varepsilon>0$. Since $m(E)<\infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\left\{f_{n}\right\} \rightarrow f$ uniformly on A and $m(E \backslash A)<\varepsilon /(4 M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $\left|f_{n}-f\right|<\frac{\varepsilon}{2 m(A)}$ on A for all $n \geq N$. So for $n \geq N$, equation (7) implies

So $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f$.

Bounded Convergence Theorem

Proof (continued). So by Theorem 4.5 and Corollaries 4.6, 4.7,

$$
\begin{gather*}
\left|\int_{E} f_{n}-\int_{E} f\right|=\left|\int_{E}\left(f_{n}-f\right)\right| \leq \int_{E}\left|f_{n}-f\right|=\int_{A}\left|f_{n}-f\right|+\int_{E \backslash A}\left|f_{n}-f\right| \\
\quad \leq \int_{A}\left|f_{n}-f\right|+\int_{E \backslash A} 2 M=\int_{A}\left|f_{n}-f\right|+2 M m(E \backslash A) \tag{7}
\end{gather*}
$$

Let $\varepsilon>0$. Since $m(E)<\infty$ and f is real-valued, Egoroff's Theorem implies that there is a measurable $A \subset E$ for which $\left\{f_{n}\right\} \rightarrow f$ uniformly on A and $m(E \backslash A)<\varepsilon /(4 M)$. By the uniform convergence on A, there is $N \in \mathbb{N}$ for which $\left|f_{n}-f\right|<\frac{\varepsilon}{2 m(A)}$ on A for all $n \geq N$. So for $n \geq N$, equation (7) implies

$$
\left|\int_{E} f_{n}-\int_{E} f\right|<\frac{\varepsilon}{2 m(A)} m(A)+2 M m(E \backslash A)<\frac{\varepsilon}{2}+2 M \frac{\varepsilon}{4 M}=\varepsilon .
$$

So $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f$.

