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Chebychev's Inequality (continued)

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({XGE\f(X)ZA})SX/Ef.

Proof (continued). (2) Suppose m(Ey) < co. Define h = Axg,. Then h
is a bounded measurable function of finite support and 0 < h < f on E. So
by the definition of integral, Am(E)) = fE h < fE f. The result holds. [
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Chebychev's Inequality

Chebychev's Inequality

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({er|f(x)2A})gX/Ef.

Proof. Define Ey = {x € E | f(x) > \}.

(1) Suppose m(Ey) = oco. For n € N, define Ey , = Ex N [—n, n] and
¥n = AXE, ,- Then ¢, is a bounded measurable function of finite support
(i-e., nonzero on a set of finite measure), Am(Ey ,) = [¢¢n, and

0 <, < f on E. By the Continuity of Measure (Theorem 2.15),

oo:)\m(E/\) A lim mE)\,, = lim /wn_/

n—oo n—oo

So fE f = 0o and the result holds.
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Proposition 4.9

Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E.
Then [ f =0if and only if f =0 a.e. on E.

Proof. (1) Suppose [ f =0. Then by Chebychev's Inequality, for each
neN, m{x e E|f(x)>1/n})=0. By Continuity of Measure
(Theorem 2.15)

m({x € E | f(x) >0})=m(US2{x € E | f(x)>1/n})

= lim m({x € E | (x) > 1/n}) = 0.

(2) Suppose f =0 a.e. on E. Let ¢ be a simple function and h a bounded
measurable function of finite support for which 0 < o < h<f on E. Then
¢ =0a.e on E and so [ ¢ = 0. Since this holds for all such ¢, we have
that [ h = 0. Since this holds for all such h, we have that [ f =0. [
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Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10

Theorem 4.10. Linearity and Monotonicity of Integration.
Let f and g be nonnegative measurable functions on E. Then for any

a>0and >0,
/‘E(aerﬂg):a/Eerﬂ/Eg.

Moreover, if f < g on E then [ f < [.g.

Proof. For a > 0,0< h<f on E ifand only if 0 < ah < af on E.
Therefore

/af = sup{/ah
E E

= asup {/ h ‘ h bounded, finite support,0 < h < f}
E

:a/f.
E

ah bounded, finite support,0 < ah < af}
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Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of
finite support. We have 0 < h<f, 0< k< g,and /= h+ k on E. By
linearity of the integral (Theorem 45), [ (= [ch+ [ k< [ f+ [cg.
Taking a suprema over all such ¢ gives [(f +g) < [+ [ g and
linearity follows.

For monotonicity, let h be an arbitrary bounded measurable function of
finite support for which 0 < h < f on E. Since f < g on E, then h< g on

E and so
/hgsup{/h’hgg}:/g.
E E E

Taking a supremum over all such h < f gives [ f < [, g.

O
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Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider

a = =1. Let h and k be bounded measurable functions of finite
support for which0 < h<fand 0 < k < g on E. We have
0<h+k<f+gonE, and h+ k also is a bounded measurable function

of finite support. Thus by linearity of integration (Theorem 4.5),

/Eh+/Ek:/E(h+k)§/E(f+g).

Taking suprema over all such h and k gives [+ [ g < [-(f + g). Next
let 0 < ¢ < f+gon E be abounded measurable function of finite support.
Define h = min{f, ¢} and k = ¢ — hon E. For x € E if {(x) < f(x) then
U(x) = h(x) < f(x) and k(x) = £(x) — h(x) = 0 < g(x); if £(x) > f(x)
then h(x) = f(x) and k(x) = ¢(x) — h(x) = ¢(x) — f(x) < g(x) (since
U(x) < f(x) + g(x)). Therefore, k < g on E.
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Theorem 4.11. Additivity Over Domain of Integration

Theorem 4.11

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

[ =[]
AUB A B

In particular, if Eg is a subset of E of measure zero, then [ f = fE\EO f.

Proof. First, for E; a measurable subset of E we have

/ f = sup{/g h|his bounded, measurable,
E;

of finite support, and 0 < h < f on E}
= sup{ [ h- xg | his bounded, measurable,
of finite support, and 0 < h- xg, < f on E} by Problem 4.10
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e 431 Aditity Ove Domainof nsgraion
Theorem 4.11 (continued 1)

Proof (continued).

/f
E

sup{ [z h- xg, | his bounded, measurable,

of finite support, and 0 < h-xg, < f on E}
= sup{ [z h- xg | his bounded, measurable,
of finite support, and 0 < h- xg < f-xg on E}

= /f'XE1-
E

Since A and B are disjoint then f - xaus = f - xa+ f - x5. So by linearity
(Theorem 4.10) we have

/ f—/fXAuB—/fXA+fXB) /fXA+/fXB—/f+/
AUB

as claimed.
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ol
Fatou's Lemma

Fatou’s Lemma. Let {f,} be a sequence of nonnegative measurable
functions on E. If {f,} — f pointwise a.e. on E, then

/Efgliminf(/Efn>.

Proof. It follows from Theorem 4.11, that the convergence is everywhere
WLOG. So f is nonnegative and measurable (by Proposition 3.9). Let h be
a bounded measurable function of finite support for which 0 < h < f on E.
Choose M > 0 for which |h| < M on E. Define Eg = {x € E | h(x) # 0}.
Then m(Ep) < oo since h is of finite support. Let n € N. Define h, on E
as h, = min{h, f,}. Then h, is measurable (by Proposition 3.8),
0<h,<Mon Eyand h,=0o0n E\ Ey (since h =0 there). Also, for
each x € E, since h(x) < f(x) and {f,(x)} — f(x), then {h,(x)} — h(x).
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e 431 Aditity Over Domainof nsgraion
Theorem 4.11 (continued 2)

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

/ f:/f+/ﬁ
AUB A B

In particular, if Eg is a subset of £ of measure zero, then [ f = [¢ ¢ f-

Proof (continued). By Proposition 4.9, / f =0 since m(Eg) = 0. By
E
additivity from above, ’

/f:/ f+/f:/ f
E E\E Eo E\Eo

as claimed. O
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——r Y
Fatou's Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to

{hn},
s () ([ ) - () o=

Since h, < f, on E and h,, is bounded and of finite support, by the
definition of [ fn, [ hn < [ fo. Therefore

et () (1)

Since h is an arbitrary bounded function of finite support and h < f, then

E E :

O
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Monotone Convergence Theorem Corollary 4.12

Monotone Convergence Theorem Corollary 4.12

Corollary 4.12. Let {u,} be a sequence of nonnegative measurable
Monotone Convergence Theorem. Let {f,} be an increasing sequence o0

of nonnegative measurable functions on E. If {f,} — f pointwise a.e. on functions on E. If f = Z up pointwise a.e. on £, then

E, then
g (L6) = [(imn) = [r [r=3(fw)

Proof. Since the sequence {f,} is increasing, then f, < f almost
everywhere on E. So by the monotonicity of integration (Theorem 4.10), Proof. Since each u, is nonnegative, then Zﬁzl u, is an increasing

[e fa < [£ f. Therefore lim sup (fE fn) < [ f. By Fatou’s Lemma, sequence of nonnegative measurable functions. So
< Ilimin n). Since limsup > liminf, it follows that
_f < liminf (f.f,). Since li lim inf, it follows th

lim </Ef,,>:/Ef. /Ef - /E;UHZ/E ILmOOZUn

n—oo

k—o00

k
0 = lim / Z u, by the Monotone Convergence Theorem
E =

Corollary 4.12 Proposition 4.13

Corollary 4.12 (continued) Proposition 4.13

Corollary 4.12. Let {u,} be a sequence of nonnegative measurable
[ee]

functions on E. If f = Z u, pointwise a.e. on E, then

fr=;Ue)

Proof (continued). Since each uj, is nonnegative, then Z::l Uy is an
increasing sequence of nonnegative measurable functions. So / 3

m({x € E|f(x) =o00}) < m({x € E|f(x) > n}) <
k
/Ef - kll—>moo/ Z tn = kILmoo;/E tp by linearity (Theorem 4.10) Since [z f < oo and this holds for all n € N, it must be that

0 m({x € E|f(x) =o0}) =0. O
/Eum

Proposition 4.13. Let nonnegative f be integrable over E. Then f is
finite a.e. on E.

Proof. Let n € N. By monotonicity of measure and Chebychev’s
Inequality,

n=1

as claimed. O



Beppo Levi's Lemma

Beppo Levi’'s Lemma. Let {f,} be an increasing sequence of nonnegative
measurable functions on E. If the sequence { [ f,} is bounded, then {f,}
converges pointwise on E to a measurable function f that is finite a.e. on

E and
lim </fn>:/f<oo.
n—oo E E

Proof. Every monotone sequence of extended real numbers converges to
an extended real number. So {f,} converges pointwise on E and is
measurable (by Proposition 3.8). By the Monotone Convergence Theorem,
{[cfa} — [£f. Since { [ fa} is bounded, its limit is finite and so

Je f < o0. By Proposition 4.13, f is finite a.e. on E. ]



