Chapter 4. Lebesgue Integration
4.3. The Lebesgue Integral of a Measurable Nonnegative Function—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Chebychev’s Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Proposition 4.9</td>
</tr>
<tr>
<td>3</td>
<td>Theorem 4.10. Linearity and Monotonicity of Integration</td>
</tr>
<tr>
<td>4</td>
<td>Fatou’s Lemma</td>
</tr>
<tr>
<td>5</td>
<td>Monotone Convergence Theorem</td>
</tr>
<tr>
<td>6</td>
<td>Proposition 4.13</td>
</tr>
<tr>
<td>7</td>
<td>Beppo Levi’s Lemma</td>
</tr>
</tbody>
</table>
Chebychev’s Inequality

Chebychev’s Inequality. Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m\left(\{x \in E \mid f(x) \geq \lambda\}\right) \leq \frac{1}{\lambda} \int_E f.$$

Proof. Define $E_\lambda = \{x \in E \mid f(x) \geq \lambda\}$.

Real Analysis
Chebychev’s Inequality

Chebychev’s Inequality.

Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f.$$

Proof. Define $E_\lambda = \{x \in E \mid f(x) \geq \lambda\}$.

(1) Suppose $m(E_\lambda) = \infty$. For $n \in \mathbb{N}$, define $E_{\lambda,n} = E_\lambda \cap [-n, n]$ and $\psi_n = \lambda \chi_{E_{\lambda,n}}$.
Chebychev’s Inequality

Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$, \[m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f. \]

Proof. Define $E_\lambda = \{x \in E \mid f(x) \geq \lambda\}$.

1. Suppose $m(E_\lambda) = \infty$. For $n \in \mathbb{N}$, define $E_{\lambda,n} = E_\lambda \cap [-n, n]$ and $\psi_n = \lambda \chi_{E_{\lambda,n}}$. Then ψ_n is a bounded measurable function of “finite support” (i.e., nonzero on a set of finite measure), and $\lambda m(E_{\lambda,n}) = \int_E \psi_n$ and $0 \leq \psi_n \leq f$ on E.

Real Analysis
November 17, 2016
Chebychev’s Inequality

Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f.$$

Proof. Define $E_\lambda = \{x \in E \mid f(x) \geq \lambda\}$.

(1) Suppose $m(E_\lambda) = \infty$. For $n \in \mathbb{N}$, define $E_{\lambda,n} = E_\lambda \cap [-n, n]$ and $\psi_n = \lambda \chi_{E_{\lambda,n}}$. Then ψ_n is a bounded measurable function of “finite support” (i.e., nonzero on a set of finite measure), and $\lambda m(E_{\lambda,n}) = \int_E \psi_n$ and $0 \leq \psi_n \leq f$ on E. By the Continuity of Measure (Theorem 2.15),

$$\infty = \lambda m(E_\lambda) = \lambda \lim_{n \to \infty} m(E_{\lambda,n}) = \lim_{n \to \infty} \int_E \psi_n \leq \int_E f.$$

So $\int_E f = \infty$ and the result holds.
Chebychev’s Inequality

Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f.$$

Proof. Define $E_\lambda = \{x \in E \mid f(x) \geq \lambda\}$.

(1) Suppose $m(E_\lambda) = \infty$. For $n \in \mathbb{N}$, define $E_{\lambda,n} = E_\lambda \cap [-n, n]$ and

$$\psi_n = \lambda \chi_{E_{\lambda,n}}.$$

Then ψ_n is a bounded measurable function of “finite support” (i.e., nonzero on a set of finite measure), and $\lambda m(E_{\lambda,n}) = \int_E \psi_n$ and $0 \leq \psi_n \leq f$ on E. By the Continuity of Measure (Theorem 2.15),

$$\infty = \lambda m(E_\lambda) = \lambda \lim_{n \to \infty} m(E_{\lambda,n}) = \lim_{n \to \infty} \int_E \psi_n \leq \int_E f.$$

So $\int_E f = \infty$ and the result holds.
Chebychev’s Inequality (continued)

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f.$$

Proof (continued). (2) Suppose $m(E_\lambda) < \infty$. Define $h = \lambda \chi_{E_\lambda}$. Then h is a bounded measurable function of finite support and $0 \leq h \leq f$ on E. So by the definition of integral, $\lambda m(E_\lambda) = \int_E h \leq \int_E f$. The result holds. \Box
Chebychev’s Inequality (continued)

Chebychev’s Inequality. Let f be a nonnegative measurable function on E. Then for any $\lambda > 0$,

$$m(\{x \in E \mid f(x) \geq \lambda\}) \leq \frac{1}{\lambda} \int_E f.$$

Proof (continued). (2) Suppose $m(E_\lambda) < \infty$. Define $h = \lambda \chi_{E_\lambda}$. Then h is a bounded measurable function of finite support and $0 \leq h \leq f$ on E. So by the definition of integral, $\lambda m(E_\lambda) = \int_E h \leq \int_E f$. The result holds. \square
Proposition 4.9

Let \(f \) be a nonnegative measurable function on set \(E \). Then \(\int_E f = 0 \) if and only if \(f = 0 \) a.e. on \(E \).

Proof. (1) Suppose \(\int_E f = 0 \). Then by Chebychev’s Inequality, for each \(n \in \mathbb{N} \), \(m(\{x \in E \mid f(x) > 1/n\}) = 0 \).
Proposition 4.9. Let f be a nonnegative measurable function on set E. Then $\int_E f = 0$ if and only if $f = 0$ a.e. on E.

Proof. (1) Suppose $\int_E f = 0$. Then by Chebychev’s Inequality, for each $n \in \mathbb{N}$, $m(\{x \in E \mid f(x) > 1/n\}) = 0$. By Continuity of Measure (Theorem 2.15)

$$m(\{x \in E \mid f(x) > 0\}) = m(\bigcup_{n=1}^{\infty} \{x \in E \mid f(x) > 1/n\})$$

$$= \lim_{n \to \infty} m(\{x \in E \mid f(x) > 1/n\}) = 0.$$
Proposition 4.9. Let f be a nonnegative measurable function on set E. Then $\int_E f = 0$ if and only if $f = 0$ a.e. on E.

Proof. (1) Suppose $\int_E f = 0$. Then by Chebychev’s Inequality, for each $n \in \mathbb{N}$, $m(\{x \in E \mid f(x) > 1/n\}) = 0$. By Continuity of Measure (Theorem 2.15)

$$m(\{x \in E \mid f(x) > 0\}) = m(\bigcup_{n=1}^{\infty} \{x \in E \mid f(x) > 1/n\}) = \lim_{n \to \infty} m(\{x \in E \mid f(x) > 1/n\}) = 0.$$

(2) Suppose $f = 0$ a.e. on E. Let φ be a simple function and h a bounded measurable function of finite support for which $0 \leq \varphi \leq h \leq f$ on E. Then $\varphi = 0$ a.e. on E and so $\int_E \varphi = 0$.
Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E. Then $\int_E f = 0$ if and only if $f = 0$ a.e. on E.

Proof. (1) Suppose $\int_E f = 0$. Then by Chebychev’s Inequality, for each $n \in \mathbb{N}$, $m(\{x \in E \mid f(x) > 1/n\}) = 0$. By Continuity of Measure (Theorem 2.15)

$$m(\{x \in E \mid f(x) > 0\}) = m(\bigcup_{n=1}^{\infty} \{x \in E \mid f(x) > 1/n\})$$

$$= \lim_{n \to \infty} m(\{x \in E \mid f(x) > 1/n\}) = 0.$$

(2) Suppose $f = 0$ a.e. on E. Let φ be a simple function and h a bounded measurable function of finite support for which $0 \leq \varphi \leq h \leq f$ on E. Then $\varphi = 0$ a.e. on E and so $\int_E \varphi = 0$. Since this holds for all such φ, we have that $\int_E h = 0$. Since this holds for all such h, we have that $\int_E f = 0$. \qed
Proposition 4.9. Let f be a nonnegative measurable function on set E. Then $\int_E f = 0$ if and only if $f = 0$ a.e. on E.

Proof. (1) Suppose $\int_E f = 0$. Then by Chebychev’s Inequality, for each $n \in \mathbb{N}$, $m(\{x \in E \mid f(x) > 1/n\}) = 0$. By Continuity of Measure (Theorem 2.15)

$$m(\{x \in E \mid f(x) > 0\}) = m(\bigcup_{n=1}^{\infty} \{x \in E \mid f(x) > 1/n\})$$

$$= \lim_{n \to \infty} m(\{x \in E \mid f(x) > 1/n\}) = 0.$$

(2) Suppose $f = 0$ a.e. on E. Let φ be a simple function and h a bounded measurable function of finite support for which $0 \leq \varphi \leq h \leq f$ on E. Then $\varphi = 0$ a.e. on E and so $\int_E \varphi = 0$. Since this holds for all such φ, we have that $\int_E h = 0$. Since this holds for all such h, we have that $\int_E f = 0$. \qed
Theorem 4.10

Theorem 4.10. Linearity and Monotonicity of Integration.
Let \(f \) and \(g \) be nonnegative measurable functions on \(E \). Then for any \(\alpha > 0 \) and \(\beta > 0 \),

\[
\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g.
\]

Moreover, if \(f \leq g \) on \(E \) then \(\int_E f \leq \int_E g \).

Proof. For \(\alpha > 0 \), \(0 \leq h \leq f \) on \(E \) if and only if \(0 \leq \alpha h \leq \alpha f \) on \(E \). Therefore

\[
\int_E \alpha f = \sup \left\{ \int_E \alpha h \ \bigg| \ \text{\(\alpha h \) bounded, finite support, } 0 \leq \alpha h \leq \alpha f \right\}
\]

\[
= \alpha \sup \left\{ \int_E h \ \bigg| \ h \text{ bounded, finite support, } 0 \leq h \leq f \right\}
\]

\[
= \alpha \int_E f.
\]
Theorem 4.10. Linearity and Monotonicity of Integration.

Let f and g be nonnegative measurable functions on E. Then for any $\alpha > 0$ and $\beta > 0$,

$$\int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g.$$

Moreover, if $f \leq g$ on E then $\int_E f \leq \int_E g$.

Proof. For $\alpha > 0$, $0 \leq h \leq f$ on E if and only if $0 \leq \alpha h \leq \alpha f$ on E. Therefore

$$\int_E \alpha f = \sup \left\{ \int_E \alpha h \mid \alpha h \text{ bounded, finite support, } 0 \leq \alpha h \leq \alpha f \right\}$$

$$= \alpha \sup \left\{ \int_E h \mid h \text{ bounded, finite support, } 0 \leq h \leq f \right\}$$

$$= \alpha \int_E f.$$
Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider \(\alpha = \beta = 1 \). Let \(h \) and \(k \) be bounded measurable functions of finite support for which \(0 \leq h \leq f \) and \(0 \leq k \leq g \) on \(E \). We have \(0 \leq h + k \leq f + g \) on \(E \), and \(h + k \) also is a bounded measurable function of finite support. Thus by linearity of integration (Theorem 4.5),

\[
\int_E h + \int_E k = \int_E (h + k) \leq \int_E (f + g).
\]
Proof (continued). To prove linearity, we only need to consider $\alpha = \beta = 1$. Let h and k be bounded measurable functions of finite support for which $0 \leq h \leq f$ and $0 \leq k \leq g$ on E. We have $0 \leq h + k \leq f + g$ on E, and $h + k$ also is a bounded measurable function of finite support. Thus by linearity of integration (Theorem 4.5),

$$\int_E h + \int_E k = \int_E (h + k) \leq \int_E (f + g).$$

Taking suprema over all such h and k gives $\int_E f + \int_E g \leq \int_E (f + g)$.
Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider \(\alpha = \beta = 1 \). Let \(h \) and \(k \) be bounded measurable functions of finite support for which \(0 \leq h \leq f \) and \(0 \leq k \leq g \) on \(E \). We have \(0 \leq h + k \leq f + g \) on \(E \), and \(h + k \) also is a bounded measurable function of finite support. Thus by linearity of integration (Theorem 4.5),

\[
\int_E h + \int_E k = \int_E (h + k) \leq \int_E (f + g).
\]

Taking suprema over all such \(h \) and \(k \) gives \(\int_E f + \int_E g \leq \int_E (f + g) \). Next let \(0 \leq \ell \leq f + g \) on \(E \) be a bounded measurable function of finite support. Define \(h = \min\{f, \ell\} \) and \(k = \ell - h \) on \(E \).
Proof (continued). To prove linearity, we only need to consider $\alpha = \beta = 1$. Let h and k be bounded measurable functions of finite support for which $0 \leq h \leq f$ and $0 \leq k \leq g$ on E. We have $0 \leq h + k \leq f + g$ on E, and $h + k$ also is a bounded measurable function of finite support. Thus by linearity of integration (Theorem 4.5),

$$\int_E h + \int_E k = \int_E (h + k) \leq \int_E (f + g).$$

Taking suprema over all such h and k gives $\int_E f + \int_E g \leq \int_E (f + g)$. Next let $0 \leq \ell \leq f + g$ on E be a bounded measurable function of finite support. Define $h = \min\{f, \ell\}$ and $k = \ell - h$ on E. For $x \in E$ if $\ell(x) \leq f(x)$ then $\ell(x) = h(x) \leq f(x)$ and $k(x) = \ell(x) - h(x) = 0 \leq g(x)$; if $\ell(x) > f(x)$ then $h(x) = f(x)$ and $k(x) = \ell(x) - h(x) = \ell(x) - f(x) \leq g(x)$ (since $\ell(x) \leq f(x) + g(x)$). Therefore, $k \leq g$ on E.
Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider $\alpha = \beta = 1$. Let h and k be bounded measurable functions of finite support for which $0 \leq h \leq f$ and $0 \leq k \leq g$ on E. We have $0 \leq h + k \leq f + g$ on E, and $h + k$ also is a bounded measurable function of finite support. Thus by linearity of integration (Theorem 4.5),

$$\int_E h + \int_E k = \int_E (h + k) \leq \int_E (f + g).$$

Taking suprema over all such h and k gives $\int_E f + \int_E g \leq \int_E (f + g)$. Next let $0 \leq \ell \leq f + g$ on E be a bounded measurable function of finite support. Define $h = \min\{f, \ell\}$ and $k = \ell - h$ on E. For $x \in E$ if $\ell(x) \leq f(x)$ then $\ell(x) = h(x) \leq f(x)$ and $k(x) = \ell(x) - h(x) = 0 \leq g(x)$; if $\ell(x) > f(x)$ then $h(x) = f(x)$ and $k(x) = \ell(x) - h(x) = \ell(x) - f(x) \leq g(x)$ (since $\ell(x) \leq f(x) + g(x)$). Therefore, $k \leq g$ on E.
Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of finite support. We have $0 \leq h \leq f$, $0 \leq k \leq g$, and $\ell = h + k$ on E. By linearity of the integral (Theorem 4.5), $\int_E \ell = \int_E h + \int_E k \leq \int_E f + \int_E g$. Taking a suprema over all such ℓ gives $\int_E (f + g) \leq \int_E f + \int_E g$ and linearity follows.
Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of finite support. We have $0 \leq h \leq f$, $0 \leq k \leq g$, and $\ell = h + k$ on E. By linearity of the integral (Theorem 4.5),

$$\int_E \ell = \int_E h + \int_E k \leq \int_E f + \int_E g.$$

Taking a suprema over all such ℓ gives $\int_E (f + g) \leq \int_E f + \int_E g$ and linearity follows.

For monotonicity, let h be an arbitrary bounded measurable function of finite support for which $0 \leq h \leq f$ on E. Since $f \leq g$ on E, then $h \leq g$ on E and so

$$\int_E h \leq \sup \left\{ \int_E h \bigg| h \leq g \right\} = \int_E g.$$
Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of finite support. We have $0 \leq h \leq f$, $0 \leq k \leq g$, and $\ell = h + k$ on E. By linearity of the integral (Theorem 4.5), $\int_E \ell = \int_E h + \int_E k \leq \int_E f + \int_E g$. Taking a suprema over all such ℓ gives $\int_E (f + g) \leq \int_E f + \int_E g$ and linearity follows.

For monotonicity, let h be an arbitrary bounded measurable function of finite support for which $0 \leq h \leq f$ on E. Since $f \leq g$ on E, then $h \leq g$ on E and so

$$\int_E h \leq \sup \left\{ \int_E h \mid h \leq g \right\} = \int_E g.$$

Taking a supremum over all such $h \leq f$ gives $\int_E f \leq \int_E g$. \qed
Theorem 4.10 (continued 2)

Proof (continued). Both \(h \) and \(k \) are bounded measurable functions of finite support. We have \(0 \leq h \leq f \), \(0 \leq k \leq g \), and \(\ell = h + k \) on \(E \). By linearity of the integral (Theorem 4.5), \(\int_E \ell = \int_E h + \int_E k \leq \int_E f + \int_E g \). Taking a suprema over all such \(\ell \) gives \(\int_E (f + g) \leq \int_E f + \int_E g \) and linearity follows.

For monotonicity, let \(h \) be an arbitrary bounded measurable function of finite support for which \(0 \leq h \leq f \) on \(E \). Since \(f \leq g \) on \(E \), then \(h \leq g \) on \(E \) and so

\[
\int_E h \leq \sup \left\{ \int_E h \ \vline \ h \leq g \right\} = \int_E g.
\]

Taking a supremum over all such \(h \leq f \) gives \(\int_E f \leq \int_E g \). \qed
Fatou’s Lemma

Fatou’s Lemma. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\int_E f \leq \liminf \left(\int_E f_n \right).
\]

Proof. It follows from Theorem 4.11, that the convergence is everywhere WLOG. So \(f \) is nonnegative and measurable (by Proposition 3.9).
Fatou’s Lemma

Fatou’s Lemma. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\int_E f \leq \lim \inf \left(\int_E f_n \right).
\]

Proof. It follows from Theorem 4.11, that the convergence is everywhere WLOG. So \(f \) is nonnegative and measurable (by Proposition 3.9). Let \(h \) be a bounded measurable function of finite support for which \(0 \leq h \leq f \) on \(E \). Choose \(M \geq 0 \) for which \(|h| \leq M \) on \(E \). Define \(E_0 = \{x \in E \mid h(x) \neq 0\} \).
Fatou’s Lemma. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\int_E f \leq \lim \inf \left(\int_E f_n \right).
\]

Proof. It follows from Theorem 4.11, that the convergence is everywhere WLOG. So \(f \) is nonnegative and measurable (by Proposition 3.9). Let \(h \) be a bounded measurable function of finite support for which \(0 \leq h \leq f \) on \(E \). Choose \(M \geq 0 \) for which \(|h| \leq M \) on \(E \). Define \(E_0 = \{ x \in E \mid h(x) \neq 0 \} \). Then \(m(E_0) < \infty \) since \(h \) is of finite support. Let \(n \in \mathbb{N} \). Define \(h_n \) on \(E \) as \(h_n = \min\{h, f_n\} \). Then \(h_n \) is measurable (by Proposition 3.8), \(0 \leq h_n \leq M \) on \(E_0 \) and \(h_n = 0 \) on \(E \setminus E_0 \) (since \(h = 0 \) there).
Fatou’s Lemma

Fatou’s Lemma. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\int_E f \leq \lim \inf \left(\int_E f_n \right).
\]

Proof. It follows from Theorem 4.11, that the convergence is everywhere WLOG. So \(f \) is nonnegative and measurable (by Proposition 3.9). Let \(h \) be a bounded measurable function of finite support for which \(0 \leq h \leq f \) on \(E \). Choose \(M \geq 0 \) for which \(|h| \leq M \) on \(E \). Define \(E_0 = \{x \in E \mid h(x) \neq 0\} \). Then \(m(E_0) < \infty \) since \(h \) is of finite support. Let \(n \in \mathbb{N} \). Define \(h_n \) on \(E \) as \(h_n = \min\{h, f_n\} \). Then \(h_n \) is measurable (by Proposition 3.8), \(0 \leq h_n \leq M \) on \(E_0 \) and \(h_n = 0 \) on \(E \setminus E_0 \) (since \(h = 0 \) there). Also, for each \(x \in E \), since \(h(x) \leq f(x) \) and \(\{f_n(x)\} \to f(x) \), then \(\{h_n(x)\} \to h(x) \).
Fatou’s Lemma

Fatou’s Lemma. Let \(\{f_n\} \) be a sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\int_E f \leq \liminf \left(\int_E f_n \right).
\]

Proof. It follows from Theorem 4.11, that the convergence is everywhere WLOG. So \(f \) is nonnegative and measurable (by Proposition 3.9). Let \(h \) be a bounded measurable function of finite support for which \(0 \leq h \leq f \) on \(E \). Choose \(M \geq 0 \) for which \(|h| \leq M \) on \(E \). Define \(E_0 = \{x \in E \mid h(x) \neq 0\} \). If \(m(E_0) < \infty \) since \(h \) is of finite support. Let \(n \in \mathbb{N} \). Define \(h_n \) on \(E \) as \(h_n = \min\{h, f_n\} \). Then \(h_n \) is measurable (by Proposition 3.8), \(0 \leq h_n \leq M \) on \(E_0 \) and \(h_n = 0 \) on \(E \setminus E_0 \) (since \(h = 0 \) there). Also, for each \(x \in E \), since \(h(x) \leq f(x) \) and \(\{f_n(x)\} \to f(x) \), then \(\{h_n(x)\} \to h(x) \).
Fatou’s Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to \(\{h_n\} \),

\[
\lim_{n \to \infty} \left(\int_E h_n \right) = \lim_{n \to \infty} \left(\int_{E_0} h_n \right) = \int_{E_0} \left(\lim_{n \to \infty} h_n \right) = \int_{E_0} h = \int_E h.
\]

Since \(h_n \leq f_n \) on \(E \) and \(h_n \) is bounded and of finite support, by the definition of \(\int_E f_n \), \(\int_E h_n \leq \int_E f_n \). Therefore

\[
\int_E h = \lim_{n \to \infty} \left(\int_E h_n \right) \leq \lim \inf \left(\int_E f_n \right).
\]
Fatou’s Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to \(\{ h_n \} \),

\[
\lim_{n \to \infty} \left(\int_E h_n \right) = \lim_{n \to \infty} \left(\int_{E_0} h_n \right) = \int_{E_0} \left(\lim_{n \to \infty} h_n \right) = \int_{E_0} h = \int_E h.
\]

Since \(h_n \leq f_n \) on \(E \) and \(h_n \) is bounded and of finite support, by the definition of \(\int_E f_n \), \(\int_E h_n \leq \int_E f_n \). Therefore

\[
\int_E h = \lim_{n \to \infty} \left(\int_E h_n \right) \leq \lim \inf \left(\int_E f_n \right).
\]

Since \(h \) is an arbitrary bounded function of finite support and \(h \leq f \), then

\[
\int_E f \leq \lim \inf \left(\int_E f_n \right).
\]
Fatou’s Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to \(\{h_n\} \),

\[
\lim_{n \to \infty} \left(\int_E h_n \right) = \lim_{n \to \infty} \left(\int_{E_0} h_n \right) = \int_{E_0} \left(\lim_{n \to \infty} h_n \right) = \int_{E_0} h = \int_E h.
\]

Since \(h_n \leq f_n \) on \(E \) and \(h_n \) is bounded and of finite support, by the definition of \(\int_E f_n \), \(\int_E h_n \leq \int_E f_n \). Therefore

\[
\int_E h = \lim_{n \to \infty} \left(\int_E h_n \right) \leq \lim \inf \left(\int_E f_n \right).
\]

Since \(h \) is an arbitrary bounded function of finite support and \(h \leq f \), then

\[
\int_E f \leq \lim \inf \left(\int_E f_n \right).
\]
Monotone Convergence Theorem. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\lim_{n \to \infty} \left(\int_{E} f_n \right) = \int_{E} \left(\lim_{n \to \infty} f_n \right) = \int_{E} f.
\]

Proof. Since the sequence \(\{f_n\} \) is increasing, then \(f_n \leq f \) almost everywhere on \(E \). So by the monotonicity of integration (Theorem 4.10),

\[
\int_{E} f_n \leq \int_{E} f.
\]

Therefore \(\lim \sup (\int_{E} f_n) \leq \int_{E} f \).
Monotone Convergence Theorem. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f.
\]

Proof. Since the sequence \(\{f_n\} \) is increasing, then \(f_n \leq f \) almost everywhere on \(E \). So by the monotonicity of integration (Theorem 4.10),

\[
\int_E f_n \leq \int_E f.
\]

Therefore

\[
\limsup_{n \to \infty} (\int_E f_n) \leq \int_E f.
\]

By Fatou’s Lemma,

\[
\int_E f \leq \liminf (\int_E f_n).
\]

Since \(\limsup \geq \liminf \), it follows that

\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E f.
\]
Monotone Convergence Theorem. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If \(\{f_n\} \to f \) pointwise a.e. on \(E \), then

\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E \left(\lim_{n \to \infty} f_n \right) = \int_E f.
\]

Proof. Since the sequence \(\{f_n\} \) is increasing, then \(f_n \leq f \) almost everywhere on \(E \). So by the monotonicity of integration (Theorem 4.10), \(\int_E f_n \leq \int_E f \). Therefore \(\limsup (\int_E f_n) \leq \int_E f \). By Fatou’s Lemma, \(\int_E f \leq \liminf (\int_E f_n) \). Since \(\limsup \geq \liminf \), it follows that

\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E f.
\]
Proposition 4.13. Let nonnegative f be integrable over E. Then f is finite a.e. on E.

Proof. Let $n \in \mathbb{N}$. By monotonicity of measure and Chebychev’s Inequality,

$$m(\{x \in E | f(x) = \infty\}) \leq m(\{x \in E | f(x) \geq n\}) \leq \frac{1}{n} \int_E f.$$
Proposition 4.13. Let nonnegative f be integrable over E. Then f is finite a.e. on E.

Proof. Let $n \in \mathbb{N}$. By monotonicity of measure and Chebychev’s Inequality,

$$m(\{x \in E \mid f(x) = \infty\}) \leq m(\{x \in E \mid f(x) \geq n\}) \leq \frac{1}{n} \int_E f.$$

Since $\int_E f < \infty$ and this holds for all $n \in \mathbb{N}$, it must be that

$m(\{x \in E \mid f(x) = \infty\}) = 0.
Proposition 4.13. Let nonnegative f be integrable over E. Then f is finite a.e. on E.

Proof. Let $n \in \mathbb{N}$. By monotonicity of measure and Chebychev’s Inequality,

$$m \left(\{ x \in E \mid f(x) = \infty \} \right) \leq m \left(\{ x \in E \mid f(x) \geq n \} \right) \leq \frac{1}{n} \int_E f.$$

Since $\int_E f < \infty$ and this holds for all $n \in \mathbb{N}$, it must be that $m \left(\{ x \in E \mid f(x) = \infty \} \right) = 0$. \qed
Beppo Levi’s Lemma. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If the sequence \(\{\int_E f_n\} \) is bounded, then \(\{f_n\} \) converges pointwise on \(E \) to a measurable function \(f \) that is finite a.e. on \(E \) and
\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E f < \infty.
\]

Proof. Every monotone sequence of extended real numbers converges to an extended real number. So \(\{f_n\} \) converges pointwise on \(E \) and is measurable (by Proposition 3.8).
Beppo Levi’s Lemma. Let \(\{ f_n \} \) be an increasing sequence of nonnegative measurable functions on \(E \). If the sequence \(\{ \int_E f_n \} \) is bounded, then \(\{ f_n \} \) converges pointwise on \(E \) to a measurable function \(f \) that is finite a.e. on \(E \) and

\[
\lim_{n \to \infty} \left(\int_{E} f_n \right) = \int_E f < \infty.
\]

Proof. Every monotone sequence of extended real numbers converges to an extended real number. So \(\{ f_n \} \) converges pointwise on \(E \) and is measurable (by Proposition 3.8). By the Monotone Convergence Theorem, \(\{ \int_E f_n \} \to \int_E f \). Since \(\{ \int_E f_n \} \) is bounded, its limit is finite and so \(\int_E f < \infty \).
Beppo Levi’s Lemma. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If the sequence \(\{\int_E f_n\} \) is bounded, then \(\{f_n\} \) converges pointwise on \(E \) to a measurable function \(f \) that is finite a.e. on \(E \) and
\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E f < \infty.
\]

Proof. Every monotone sequence of extended real numbers converges to an extended real number. So \(\{f_n\} \) converges pointwise on \(E \) and is measurable (by Proposition 3.8). By the Monotone Convergence Theorem, \(\{\int_E f_n\} \to \int_E f \). Since \(\{\int_E f_n\} \) is bounded, its limit is finite and so \(\int_E f < \infty \). By Proposition 4.13, \(f \) is finite a.e. on \(E \). \(\square \)
Beppo Levi’s Lemma. Let \(\{f_n\} \) be an increasing sequence of nonnegative measurable functions on \(E \). If the sequence \(\{\int_E f_n\} \) is bounded, then \(\{f_n\} \) converges pointwise on \(E \) to a measurable function \(f \) that is finite a.e. on \(E \) and

\[
\lim_{n \to \infty} \left(\int_E f_n \right) = \int_E f < \infty.
\]

Proof. Every monotone sequence of extended real numbers converges to an extended real number. So \(\{f_n\} \) converges pointwise on \(E \) and is measurable (by Proposition 3.8). By the Monotone Convergence Theorem, \(\{\int_E f_n\} \to \int_E f \). Since \(\{\int_E f_n\} \) is bounded, its limit is finite and so \(\int_E f < \infty \). By Proposition 4.13, \(f \) is finite a.e. on \(E \).