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Chebychev's Inequality

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({xEE]f(X)Z)\})S)\/Ef.

Real Analysis December 2, 2020 3/ 18



Chebychev's Inequality

Chebychev's Inequality

Chebychev’s Inequality.

Let f be a nonnegative measurable function on E. Then for any A > 0,
1
m({er]f(x)z)\})g)\/f.
E

Proof. Define Ey = {x € E | f(x) > A}.
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Chebychev's Inequality

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({xEE]f(X)Z)\})S)\/Ef.

Proof. Define Ey = {x € E | f(x) > A}.

(1) Suppose m(Ey) = oco. For n € N, define Ey , = Ex N[—n, n] and

¥n = AXE, ,- Then v, is a bounded measurable function of finite support
(i.e., nonzero on a set of finite measure), Am(Ex 5) = [ s, and
0<y,<foncE.
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Chebychev's Inequality

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({xEE]f(X)Z)\})S)\/Ef.

Proof. Define Ey = {x € E | f(x) > A}.

(1) Suppose m(Ey) = oco. For n € N, define Ey , = Ex N[—n, n] and

¥n = AXE, ,- Then v, is a bounded measurable function of finite support
(i.e., nonzero on a set of finite measure), Am( (Ex,n) = [g¥n, and

0 <, < f on E. By the Continuity of Measure (Theorem 2.15),

0o =Am(Ey) = A lim m(Ey ) = lim /zl)n_/

n—oo n—oo

So fE f = 0o and the result holds.
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Chebychev's Inequality

Chebychev's Inequality (continued)

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E. Then for any A > 0,

1
m({er!f(x)Z)\})g)\/Ef.

Proof (continued). (2) Suppose m(Ey) < co. Define h = Axg,. Then h
is a bounded measurable function of finite support and 0 < h < f on E. So
by the definition of integral, Am(E\) = [z h < [ f. The result holds. [
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Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E.
Then [ f=0if and only if f =0 a.e. on E.
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Proposition 4.9

Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E.
Then [ f=0if and only if f =0 a.e. on E.

Proof. (1) Suppose fE f = 0. Then by Chebychev's Inequality, for each
neN, m({x € E | f(x)>1/n}) =0. By Continuity of Measure

(Theorem 2.15)
m({x € E|f(x)>0})=m(Up2i{x € E|f(x)>1/n})

= lim m({x € E | f(x) > 1/n}) = 0.
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Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E.
Then [ f=0if and only if f =0 a.e. on E.

Proof. (1) Suppose fE f = 0. Then by Chebychev's Inequality, for each
neN, m({x € E | f(x)>1/n}) =0. By Continuity of Measure
(Theorem 2.15)

m({x € E|f(x)>0})=m(Up2i{x € E|f(x)>1/n})
~ lim m({x € E| f(x) > 1/n}) = 0.

(2) Suppose f =0 a.e. on E. Let ¢ be a simple function and h a bounded
measurable function of finite support for which 0 < o < h< f on E. Then
¢ =0a.e.on E and so nga = 0. Since this holds for all such ¢, we have
that [ h = 0. Since this holds for all such h, we have that [ f=0. [

Real Analysis December 2, 2020 5/ 18



Theorem 4.10

Theorem 4.10. Linearity and Monotonicity of Integration.
Let f and g be nonnegative measurable functions on E. Then for any

a>0and G >0,
/E(oef+ﬂg):a/t_f+ﬁ/b_g.

Moreover, if f < g on E then [ f < [_g.
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Theorem 4.10

Theorem 4.10. Linearity and Monotonicity of Integration.
Let f and g be nonnegative measurable functions on E. Then for any

a>0and G >0,
/E(oef+5g):a/t_f+ﬁ/b_g.

Moreover, if f < g on E then [ f < [_g.

Proof. Fora > 0,0< h<fon E if and only if 0 < ah < af on E.
Therefore

/af = sup{/ah
E E

= asup{/ h ’ h bounded, finite support,0 < h < f}
E

:a/f.
E
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Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider

a = =1. Let h and k be bounded measurable functions of finite
support for which 0 < h<f and 0 < k < g on E. We have
0<h+k<f+gonE, and h+ k also is a bounded measurable function
of finite support. Thus by linearity of integration (Theorem 4.5),

/Eh+/Ek:/E(h+k)§/E(f+g).

Taking suprema over all such h and k gives [ f+ [ g < [-(f + g).
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Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider

a = =1. Let h and k be bounded measurable functions of finite
support for which 0 < h<f and 0 < k < g on E. We have
0<h+k<f+gonE, and h+ k also is a bounded measurable function
of finite support. Thus by linearity of integration (Theorem 4.5),

/Eh+/Ek:/E(h+k)§/E(f+g).

Taking suprema over all such h and k gives [ f + [c g < [-(f + g). Next

let 0 < ¢ < f+ g on E be a bounded measurable function of finite support.
Define h = min{f, ¢} and k =¢ — hon E. For x € E if {/(x) < f(x) then

0(x) = h(x) < f(x) and k(x) = €(x) — h(x) =0 < g(x); if £(x) > f(x)

then h(x) = f(x) and k(x) = ¢(x) — h(x) = £(x) — f(x) < g(x) (since
U(x) < f(x) + g(x)). Therefore, k < g on E.
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Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of
finite support. We have 0 < h<f, 0< k<g,and / =h+ k on E. By
linearity of the integral (Theorem 45), [ ¢ = [ch+ [ k< [ f+ [cg.
Taking a suprema over all such ¢ gives [(f + g) < [ f + [ g and
linearity follows.
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Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of
finite support. We have 0 < h<f, 0< k<g,and / =h+ k on E. By
linearity of the integral (Theorem 45), [ ¢ = [ch+ [ k< [ f+ [cg.
Taking a suprema over all such ¢ gives [(f + g) < [ f + [ g and
linearity follows.

For monotonicity, let h be an arbitrary bounded measurable function of
finite support for which 0 < h < f on E. Since f < gon E, then h < g on

E and so
frsun fopee} -
E E E

Taking a supremum over all such h < f gives [ f < [, g. O
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Theorem 4.11

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

IR
AUB A B

In particular, if Eo is a subset of £ of measure zero, then [ f = [ . f.
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Theorem 4.11

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

IR
AUB A B

In particular, if Eo is a subset of £ of measure zero, then [ f = [ . f.

Proof. First, for E; a measurable subset of E we have

/ f = sup{[g h|his bounded, measurable,
E1

of finite support, and 0 < h < f on E;}
= sup{[gh-xg | his bounded, measurable,
of finite support, and 0 < h- xg, < f on E} by Problem 4.10
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Theorem 4.11 (continued 1)

Proof (continued). ...

/f
E;

sup{ [z h- g, | his bounded, measurable,

of finite support, and 0 < h- xg, < f on E}
sup{ [z h- xE, | his bounded, measurable,
of finite support, and 0 < h- xg, < f-xg on E}

= /f'XE1-
E
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Theorem 4.11 (continued 1)

Proof (continued). ...

/f
E;

sup{ [z h- g, | his bounded, measurable,

of finite support, and 0 < h- xg, < f on E}
sup{ [z h- xE, | his bounded, measurable,
of finite support, and 0 < h- xg, < f-xg on E}

= /f'XE1-
E

Since A and B are disjoint then f - xaug = f - xa+ f - x5. So by linearity
(Theorem 4.10) we have

/ f_/fXAuB/(fXA-i-fXB /fXA+/fXB/f+/
AUB

as claimed.
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Theorem 4.11 (continued 2)

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E. If A and B are disjoint
measurable subsets of E, then

|or= [ [r
AuB A B

In particular, if Eq is a subset of E of measure zero, then [, f = fE\EO f.

Proof (continued). By Proposition 4.9, / f =0 since m(Ey) = 0. By
E
additivity from above, ’

RN
E E\EO Eo E\EO

as claimed. O
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Fatou's Lemma

Fatou’s Lemma. Let {f,} be a sequence of nonnegative measurable
functions on E. If {f,} — f pointwise a.e. on E, then

/Efgliminf(/Ef,,>.
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Fatou's Lemma

Fatou’s Lemma. Let {f,} be a sequence of nonnegative measurable
functions on E. If {f,} — f pointwise a.e. on E, then

/Efgliminf(/Ef,,>.

Proof. It follows from Theorem 4.11, that the convergence is everywhere
WLOG. So f is nonnegative and measurable (by Proposition 3.9). Let h be
a bounded measurable function of finite support for which 0 < h < f on E.
Choose M > 0 for which |h| < M on E. Define Eg = {x € E | h(x) # 0}.
Then m(Ep) < oo since h is of finite support.
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Fatou's Lemma

Fatou’s Lemma. Let {f,} be a sequence of nonnegative measurable
functions on E. If {f,} — f pointwise a.e. on E, then

/Efgliminf(/Ef,,>.

Proof. It follows from Theorem 4.11, that the convergence is everywhere
WLOG. So f is nonnegative and measurable (by Proposition 3.9). Let h be
a bounded measurable function of finite support for which 0 < h < f on E.
Choose M > 0 for which |h| < M on E. Define Eg = {x € E | h(x) # 0}.
Then m(Ep) < oo since h is of finite support. Let n € N. Define h, on E
as h, = min{h, f,}. Then h, is measurable (by Proposition 3.8),
0<h,<Mon Eyand h,=0o0n E\ Ey (since h =0 there). Also, for
each x € E, since h(x) < f(x) and {f,(x)} — f(x), then {h,(x)} — h(x).
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Fatou's Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to

{hn},

s ([ ) ([ ) - () - [
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Fatou's Lemma

Fatou's Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to

{hn},

s ([ ) ([ ) - () - [

Since h, < f, on E and h, is bounded and of finite support, by the
definition of [ fp, [z hn < [g fo. Therefore

fo-n ([2) ()

Since h is an arbitrary bounded function of finite support and h < f, then

/ f =sup {/ h | h bounded, finite support, 0 < h < f} <liminf (/ f,,) .
E E E

O

13 /18
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Monotone Convergence Theorem

Monotone Convergence Theorem

Monotone Convergence Theorem. Let {f,} be an increasing sequence
of nonnegative measurable functions on E. If {f,} — f pointwise a.e. on

E, then
jim ([o#) = [ (im) = [+
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Monotone Convergence Theorem

Monotone Convergence Theorem

Monotone Convergence Theorem. Let {f,} be an increasing sequence
of nonnegative measurable functions on E. If {f,} — f pointwise a.e. on

E, then
jim ([o#) = [ (im) = [+

Proof. Since the sequence {f,} is increasing, then f, < f almost

everywhere on E. So by the monotonicity of integration (Theorem 4.10),
[e fa < [ f. Therefore limsup ( [z fa) < [ f.
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Monotone Convergence Theorem

Monotone Convergence Theorem. Let {f,} be an increasing sequence
of nonnegative measurable functions on E. If {f,} — f pointwise a.e. on

E, then
jim ([o#) = [ (im) = [+

Proof. Since the sequence {f,} is increasing, then f, < f almost
everywhere on E. So by the monotonicity of integration (Theorem 4.10),
Je o < [¢ f. Therefore lim sup (fE f,,) < [g f. By Fatou's Lemma,

Je f <liminf (fE f,,). Since limsup > liminf, it follows that

im (fn)= 7

Real Analysis December 2, 2020 14 / 18
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Corollary 4.12

Corollary 4.12. Let {u,} be a sequence of nonnegative measurable
o0

functionson E. If f = Z up pointwise a.e. on E, then

n=1

fr=3;()
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Corollary 4.12

Corollary 4.12. Let {u,} be a sequence of nonnegative measurable
o0

functionson E. If f = Z up pointwise a.e. on E, then

n=1

fr=3;()

. . . k . . .
Proof. Since each u, is nonnegative, then > 7 ; u, is an increasing
sequence of nonnegative measurable functions. So

00 k
/Ef = /Enz_;un:/ElemoonZ:lun

k
= lim / Z u, by the Monotone Convergence Theorem
E

k—o00
n=1
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Corollary 4.12

Corollary 4.12 (continued)

Corollary 4.12. Let {u,} be a sequence of nonnegative measurable
o0

functionson E. If f = Z up pointwise a.e. on E, then

B

. . . . k .
Proof (continued). Since each u, is nonnegative, then Y, uy is an
increasing sequence of nonnegative measurable functions. So

k k
f = lim up = lim up by linearity (Theorem 4.10
/E k—>oo/,_:;n k—»oo;/b—ny Y( )
o0
= Z/Um
n=1 E

as claimed. ]
Real Analysis December 2, 2020 16 / 18



Proposition 4.13

Proposition 4.13. Let nonnegative f be integrable over E. Then f is
finite a.e. on E.
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Proposition 4.13

Proposition 4.13

Proposition 4.13. Let nonnegative f be integrable over E. Then f is
finite a.e. on E.

Proof. Let n € N. By monotonicity of measure and Chebychev's
Inequality,

m({x € E|f(x) = 00}) < m({x € E|f(x) > n}) < /f

Since [z f < oo and this holds for all n € N, it must be that
m({x € E|f(x) = oc0}) =0. O
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Beppo Levi's Lemma

Beppo Levi's Lemma

Beppo Levi’'s Lemma. Let {f,} be an increasing sequence of nonnegative
measurable functions on E. If the sequence { [ f,} is bounded, then {f,}
converges pointwise on E to a measurable function f that is finite a.e. on

E and
lim (/fn)—/f<oo.
n—oo E E
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Beppo Levi's Lemma

Beppo Levi’'s Lemma. Let {f,} be an increasing sequence of nonnegative
measurable functions on E. If the sequence { [ f,} is bounded, then {f,}
converges pointwise on E to a measurable function f that is finite a.e. on

E and
lim (/fn)—/f<oo.
n—oo E E

Proof. Every monotone sequence of extended real numbers converges to
an extended real number. So {f,} converges pointwise on E and is
measurable (by Proposition 3.8). By the Monotone Convergence Theorem,
{[cfa} — [ f. Since { [ fa} is bounded, its limit is finite and so

fE f < co. By Proposition 4.13, f is finite a.e. on E. O
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