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Chebychev’s Inequality

Chebychev’s Inequality

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E . Then for any λ > 0,

m ({x ∈ E | f (x) ≥ λ}) ≤ 1

λ

∫
E

f .

Proof. Define Eλ = {x ∈ E | f (x) ≥ λ}.

(1) Suppose m(Eλ) = ∞. For n ∈ N, define Eλ,n = Eλ ∩ [−n, n] and
ψn = λχEλ,n

. Then ψn is a bounded measurable function of finite support
(i.e., nonzero on a set of finite measure), λm(Eλ,n) =

∫
E ψn, and

0 ≤ ψn ≤ f on E . By the Continuity of Measure (Theorem 2.15),

∞ = λm(Eλ) = λ lim
n→∞

m(Eλ,n) = lim
n→∞

∫
E
ψn ≤

∫
E

f .

So
∫
E f = ∞ and the result holds.
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Chebychev’s Inequality

Chebychev’s Inequality (continued)

Chebychev’s Inequality.
Let f be a nonnegative measurable function on E . Then for any λ > 0,

m ({x ∈ E | f (x) ≥ λ}) ≤ 1

λ

∫
E

f .

Proof (continued). (2) Suppose m(Eλ) <∞. Define h = λχEλ
. Then h

is a bounded measurable function of finite support and 0 ≤ h ≤ f on E . So
by the definition of integral, λm(Eλ) =

∫
E h ≤

∫
E f . The result holds.
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Proposition 4.9

Proposition 4.9

Proposition 4.9. Let f be a nonnegative measurable function on set E .
Then

∫
E f = 0 if and only if f = 0 a.e. on E .

Proof. (1) Suppose
∫
E f = 0. Then by Chebychev’s Inequality, for each

n ∈ N, m({x ∈ E | f (x) > 1/n}) = 0. By Continuity of Measure
(Theorem 2.15)

m({x ∈ E | f (x) > 0}) = m(∪∞n=1{x ∈ E | f (x) > 1/n})

= lim
n→∞

m({x ∈ E | f (x) > 1/n}) = 0.

(2) Suppose f = 0 a.e. on E . Let ϕ be a simple function and h a bounded
measurable function of finite support for which 0 ≤ ϕ ≤ h ≤ f on E . Then
ϕ = 0 a.e. on E and so

∫
E ϕ = 0. Since this holds for all such ϕ, we have

that
∫
E h = 0. Since this holds for all such h, we have that

∫
E f = 0.
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Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10

Theorem 4.10. Linearity and Monotonicity of Integration.
Let f and g be nonnegative measurable functions on E . Then for any
α > 0 and β > 0, ∫

E
(αf + βg) = α

∫
E

f + β

∫
E

g .

Moreover, if f ≤ g on E then
∫
E f ≤

∫
E g .

Proof. For α > 0, 0 ≤ h ≤ f on E if and only if 0 ≤ αh ≤ αf on E .
Therefore∫

E
αf = sup

{∫
E
αh

∣∣∣∣αh bounded, finite support, 0 ≤ αh ≤ αf

}
= α sup

{∫
E

h

∣∣∣∣ h bounded, finite support, 0 ≤ h ≤ f

}
= α

∫
E

f .
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Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider
α = β = 1. Let h and k be bounded measurable functions of finite
support for which 0 ≤ h ≤ f and 0 ≤ k ≤ g on E . We have
0 ≤ h + k ≤ f + g on E , and h + k also is a bounded measurable function
of finite support. Thus by linearity of integration (Theorem 4.5),∫

E
h +

∫
E

k =

∫
E
(h + k) ≤

∫
E
(f + g).

Taking suprema over all such h and k gives
∫
E f +

∫
E g ≤

∫
E (f + g). Next

let 0 ≤ ` ≤ f + g on E be a bounded measurable function of finite support.
Define h = min{f , `} and k = `− h on E . For x ∈ E if `(x) ≤ f (x) then
`(x) = h(x) ≤ f (x) and k(x) = `(x)− h(x) = 0 ≤ g(x); if `(x) > f (x)
then h(x) = f (x) and k(x) = `(x)− h(x) = `(x)− f (x) ≤ g(x) (since
`(x) ≤ f (x) + g(x)). Therefore, k ≤ g on E .

() Real Analysis December 2, 2020 7 / 18



Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10 (continued 1)

Proof (continued). To prove linearity, we only need to consider
α = β = 1. Let h and k be bounded measurable functions of finite
support for which 0 ≤ h ≤ f and 0 ≤ k ≤ g on E . We have
0 ≤ h + k ≤ f + g on E , and h + k also is a bounded measurable function
of finite support. Thus by linearity of integration (Theorem 4.5),∫

E
h +

∫
E

k =

∫
E
(h + k) ≤

∫
E
(f + g).

Taking suprema over all such h and k gives
∫
E f +

∫
E g ≤

∫
E (f + g). Next

let 0 ≤ ` ≤ f + g on E be a bounded measurable function of finite support.
Define h = min{f , `} and k = `− h on E . For x ∈ E if `(x) ≤ f (x) then
`(x) = h(x) ≤ f (x) and k(x) = `(x)− h(x) = 0 ≤ g(x); if `(x) > f (x)
then h(x) = f (x) and k(x) = `(x)− h(x) = `(x)− f (x) ≤ g(x) (since
`(x) ≤ f (x) + g(x)). Therefore, k ≤ g on E .

() Real Analysis December 2, 2020 7 / 18



Theorem 4.10. Linearity and Monotonicity of Integration

Theorem 4.10 (continued 2)

Proof (continued). Both h and k are bounded measurable functions of
finite support. We have 0 ≤ h ≤ f , 0 ≤ k ≤ g , and ` = h + k on E . By
linearity of the integral (Theorem 4.5),

∫
E ` =

∫
E h +

∫
E k ≤

∫
E f +

∫
E g .

Taking a suprema over all such ` gives
∫
E (f + g) ≤

∫
E f +

∫
E g and

linearity follows.

For monotonicity, let h be an arbitrary bounded measurable function of
finite support for which 0 ≤ h ≤ f on E . Since f ≤ g on E , then h ≤ g on
E and so ∫

E
h ≤ sup

{∫
E

h

∣∣∣∣ h ≤ g

}
=

∫
E

g .

Taking a supremum over all such h ≤ f gives
∫
E f ≤

∫
E g .
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Theorem 4.11. Additivity Over Domain of Integration

Theorem 4.11

Theorem 4.11. Additivity Over Domain of Integration.
Let f be a nonnegative measurable function on E . If A and B are disjoint
measurable subsets of E , then∫

A∪·B
f =

∫
A

f +

∫
B

f .

In particular, if E0 is a subset of E of measure zero, then
∫
E f =

∫
E\E0

f .

Proof. First, for E1 a measurable subset of E we have∫
E1

f = sup{
∫
E1

h | h is bounded, measurable,

of finite support, and 0 ≤ h ≤ f on E1}
= sup{

∫
E h · χE1 | h is bounded, measurable,

of finite support, and 0 ≤ h · χE1 ≤ f on E} by Problem 4.10
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Theorem 4.11. Additivity Over Domain of Integration

Theorem 4.11 (continued 1)

Proof (continued). . . .∫
E1

f = sup{
∫
E h · χE1 | h is bounded, measurable,

of finite support, and 0 ≤ h · χE1 ≤ f on E}
= sup{

∫
E h · χE1 | h is bounded, measurable,

of finite support, and 0 ≤ h · χE1 ≤ f · χE1 on E}

=

∫
E

f · χE1 .

Since A and B are disjoint then f · χA∪·B = f · χA + f · χB . So by linearity
(Theorem 4.10) we have∫

A∪·B
f =

∫
E

f ·χA∪·B =

∫
E
(f ·χA+f ·χB) =

∫
E

f ·χA+

∫
E

f ·χB =

∫
A

f +

∫
B

f ,

as claimed.
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Theorem 4.11. Additivity Over Domain of Integration
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In particular, if E0 is a subset of E of measure zero, then
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f .

Proof (continued). By Proposition 4.9,

∫
E0

f = 0 since m(E0) = 0. By

additivity from above,∫
E

f =

∫
E\E0

f +

∫
E0

f =

∫
E\E0

f ,

as claimed.
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Fatou’s Lemma

Fatou’s Lemma

Fatou’s Lemma. Let {fn} be a sequence of nonnegative measurable
functions on E . If {fn} → f pointwise a.e. on E , then∫

E
f ≤ lim inf

(∫
E

fn

)
.

Proof. It follows from Theorem 4.11, that the convergence is everywhere
WLOG. So f is nonnegative and measurable (by Proposition 3.9). Let h be
a bounded measurable function of finite support for which 0 ≤ h ≤ f on E .
Choose M ≥ 0 for which |h| ≤ M on E . Define E0 = {x ∈ E | h(x) 6= 0}.
Then m(E0) <∞ since h is of finite support.

Let n ∈ N. Define hn on E
as hn = min{h, fn}. Then hn is measurable (by Proposition 3.8),
0 ≤ hn ≤ M on E0 and hn = 0 on E \ E0 (since h = 0 there). Also, for
each x ∈ E , since h(x) ≤ f (x) and {fn(x)} → f (x), then {hn(x)} → h(x).
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Fatou’s Lemma

Fatou’s Lemma (continued)

Proof (continued). Applying the Bounded Convergence Theorem to
{hn},

lim
n→∞

(∫
E

hn

)
= lim

n→∞

(∫
E0

hn

)
=

∫
E0

(
lim

n→∞
hn

)
=

∫
E0

h =

∫
E

h.

Since hn ≤ fn on E and hn is bounded and of finite support, by the
definition of

∫
E fn,

∫
E hn ≤

∫
E fn. Therefore∫

E
h = lim

n→∞

(∫
E

hn

)
≤ lim inf

(∫
E

fn

)
.

Since h is an arbitrary bounded function of finite support and h ≤ f , then∫
E

f = sup

{∫
E

h | h bounded, finite support, 0 ≤ h ≤ f

}
≤ lim inf

(∫
E

fn

)
.
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Monotone Convergence Theorem

Monotone Convergence Theorem

Monotone Convergence Theorem. Let {fn} be an increasing sequence
of nonnegative measurable functions on E . If {fn} → f pointwise a.e. on
E , then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn

)
=

∫
E

f .

Proof. Since the sequence {fn} is increasing, then fn ≤ f almost
everywhere on E . So by the monotonicity of integration (Theorem 4.10),∫
E fn ≤

∫
E f . Therefore lim sup

(∫
E fn

)
≤

∫
E f .

By Fatou’s Lemma,∫
E f ≤ lim inf

(∫
E fn

)
. Since lim sup ≥ lim inf, it follows that

lim
n→∞

(∫
E

fn

)
=

∫
E

f .
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Corollary 4.12

Corollary 4.12

Corollary 4.12. Let {un} be a sequence of nonnegative measurable

functions on E . If f =
∞∑

n=1

un pointwise a.e. on E , then

∫
E

f =
∞∑

n=1

(∫
E

un

)
.

Proof. Since each un is nonnegative, then
∑k

n=1 un is an increasing
sequence of nonnegative measurable functions. So∫

E
f =

∫
E

∞∑
n=1

un =

∫
E

lim
k→∞

k∑
n=1

un

= lim
k→∞

∫
E

k∑
n=1

un by the Monotone Convergence Theorem
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Corollary 4.12

Corollary 4.12 (continued)

Corollary 4.12. Let {un} be a sequence of nonnegative measurable

functions on E . If f =
∞∑

n=1

un pointwise a.e. on E , then

∫
E

f =
∞∑

n=1

(∫
E

un

)
.

Proof (continued). Since each un is nonnegative, then
∑k

n=1 uk is an
increasing sequence of nonnegative measurable functions. So∫

E
f = lim

k→∞

∫
E

k∑
n=1

un = lim
k→∞

k∑
n=1

∫
E

un by linearity (Theorem 4.10)

=
∞∑

n=1

∫
E

un,

as claimed.
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Proposition 4.13

Proposition 4.13

Proposition 4.13. Let nonnegative f be integrable over E . Then f is
finite a.e. on E .

Proof. Let n ∈ N. By monotonicity of measure and Chebychev’s
Inequality,

m ({x ∈ E |f (x) = ∞}) ≤ m ({x ∈ E |f (x) ≥ n}) ≤ 1

n

∫
E

f .

Since
∫
E f <∞ and this holds for all n ∈ N, it must be that

m ({x ∈ E |f (x) = ∞}) = 0.
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Beppo Levi’s Lemma

Beppo Levi’s Lemma

Beppo Levi’s Lemma. Let {fn} be an increasing sequence of nonnegative
measurable functions on E . If the sequence {

∫
E fn} is bounded, then {fn}

converges pointwise on E to a measurable function f that is finite a.e. on
E and

lim
n→∞

(∫
E

fn

)
=

∫
E

f <∞.

Proof. Every monotone sequence of extended real numbers converges to
an extended real number. So {fn} converges pointwise on E and is
measurable (by Proposition 3.8). By the Monotone Convergence Theorem,{∫

E fn
}
→

∫
E f . Since {

∫
E fn} is bounded, its limit is finite and so∫

E f <∞. By Proposition 4.13, f is finite a.e. on E .
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