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Proposition 4.14. Let f be a measurable function on E. Then fT and f~
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fE f~ < oo. Now f* and f~ are nonnegative, so by the linearity of
integration of nonnegative functions Theorem 4. 10
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Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then fT and f~
are integrable over E if and only if || is integrable over E.

Proof. Suppose f™ and f~ are integrable over E; that is, fE fT < oo and
fE f~ < oo. Now f* and f~ are nonnegative, so by the linearity of
integration of nonnegative functions Theorem 4. 10

[iei= [erem= [roe [ <o

and |f| is integrable over E.

Suppose |f| is integrable over E; that is, [ |f| < oo. Now 0 < ft < |f|
and 0 < f~ < |f| on E, so by monotonicity of integration for nonnegative
functions (Theorem 4.10),

0</f+</\fy<ooand0</f </yf|<oo

Then fT and f~ are integrable over E. []
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Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E
and/f:/ fif Ep C E and m(Ep) = 0.
E E\Ep
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Proposition 4.15

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E
and/f:/ fif Ep C E and m(Ep) = 0.
E E\Ep

Proof. By Proposition 4.13, |f| is finite a.e. on E. So f is finite a.e. on E,
as claimed.
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Proposition 4.15

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E
and/f:/ fif Ep C E and m(Ep) = 0.
E E\Ep

Proof. By Proposition 4.13, |f| is finite a.e. on E. So f is finite a.e. on E,
as claimed. Next,

/f = /f+ /f by definition of/f
E

- / ft / f~ by additivity of integration (Theorem 4.11)
E\Ep E\Eg

= / f by definition of / f.
E\Ey E\Ey

The claim holds. O
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Proposition 4.16. The Integral Comparison Test.
Let f be a measurable function on E. Suppose there is a nonnegative

function g that is integrable over E and |f| < g on E. Then f is
integrable over E and | [ f| < [¢|f].
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Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative
function g that is integrable over E and |f| < g on E. Then f is
integrable over E and | [ f| < [¢|f].

Proof. By monotonicity of integration for nonnegative functions

(Theorem 4.10), |f| is integrable and so by Proposition 4.14, f is
integrable.
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Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative
function g that is integrable over E and |f| < g on E. Then f is
integrable over E and | [ f| < [¢|f].

Proof. By monotonicity of integration for nonnegative functions
(Theorem 4.10), |f| is integrable and so by Proposition 4.14, f is
integrable. Therefore

/ f‘ _ / F+ _/ f" by definition

E E E

(/ f+) + </ f‘) by the triangle inequality on R
E E

= /(f+ + ) by linearity for nonnegative functions (Thm. 4.10)
E

- /\f.
E L]
)
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Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any « and j3, the
function af + (g is integrable over E and

/E(af+ﬂg):oz/Ef+ﬁ/Eg.

AIso,iff<gonE,then/f</g.
E E
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Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any « and j3, the
function af + (g is integrable over E and

/E(af+ﬂg):oz/Ef+ﬁ/Eg.

AIso,iff<gonE,then/f</g.
E E

Proof. If a > 0, then (af)t = af ™ and (af)” =af . If a <0, then
(af)t = —af ™ and (af)” = —aft,
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any « and j3, the
function af + (g is integrable over E and

/E(af+ﬂg):a/Ef+ﬁ/Eg

AIso,iff<gonE,then/f</g

E E
Proof. If a > 0, then (af)t = af ™ and (af)” =af . If a <0, then
(af)T = —af™ and (af)” = —af*. So for a >0,

/Eaf = /E((af)Jr —(af)7) = /E(af)Jr —/E(ozf) by definition
= /ou‘+ /af a/ f+—a/Ef by linearity (Thm. 4.10)
— </ - / > / f by definition.
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Theorem 4.17 (continued 1)
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Theorem 4.17 (continued 1)

Proof (continued). For o < 0,

/Eaf = /E((af)+(af)‘)
= /E(odr)+ —/E(af) by definition

= [af)= [(mar)

= (—a)/ f~— (—a)/ fT by linearity (Theorem 4.10)
E

E
- <_ - +/ f+> :a/ f by definition.
E E E
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Theorem 4.17 (continued 1)

Proof (continued). For o < 0,

/Eaf = /E((af)+(af)‘)
= /E(odr)+ —/E(af) by definition

= [af)= [(mar)

= (—a)/ f~— (—a)/ fT by linearity (Theorem 4.10)
E

E
- <_ - +/ f+> :a/ f by definition.
E E E

To complete the proof of linearity, we need to show that
Je(f +g) = ([e )+ (Jz &)- By linearity for nonnegative functions
(Theorem 4.10), |f| + |g]| is integrable over E.
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Theorem 4.17 (continued 2)

Proof (continued). Pointwise, |f + g| < |f| + |g| on E, then by the
Integral Comparison Test (Proposition 4.16),

| Je(F+8)l < JeIf + &l < JeIfl+ [¢lg] and f + g is integrable over E.
By Proposition 4.15, f + g is finite a.e. on E and f and g are finite a.e. on
E. So WLOG, f and g are finite on E.
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Theorem 4.17 (continued 2)

Proof (continued). Pointwise, |f + g| < |f| + |g| on E, then by the
Integral Comparison Test (Proposition 4.16),

| Je(F+8)l < JeIf + &l < JeIfl+ [¢lg] and f + g is integrable over E.
By Proposition 4.15, f + g is finite a.e. on E and f and g are finite a.e. on
E. So WLOG, f and g are finite on E. Now

(f+g)r—(f+g) =f+g=(f" - f‘)+(g+ —g ) on E and so
(f+g)"+f +g =(f+g) +ft +g" on E. So by linearity of
integration (Theorem 4.10),

Jever+ [re o= [tro+ [+ [ e

Since f, g, and f + g are integrable over E, each of these integrals is
finite.
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Theorem 4.17 (continued 2)

Proof (continued). Pointwise, |f + g| < |f| + |g| on E, then by the
Integral Comparison Test (Proposition 4.16),

| Je(F+8)l < JeIf + &l < JeIfl+ [¢lg] and f + g is integrable over E.
By Proposition 4.15, f + g is finite a.e. on E and f and g are finite a.e. on
E. So WLOG, f and g are finite on E. Now

(f+g)r—(f+g) =f+g=(f" - f‘)+(g+ —g ) on E and so
(f+g)"+f +g =(f+g) +ft +g" on E. So by linearity of
integration (Theorem 4.10),

Jever+ [re o= [tro+ [+ [ e

Since f, g, and f + g are integrable over E, each of these integrals is
finite. Rearranging, we have

L= e [e=[¢rar- [¢rer

or [ f+ [rg= [c(f+g). This establishes linearity.
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration
(continued 3)

Proof (continued). To establish monotonicity, we again observe that
WLOG f and g can be taken as finite on E.
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration
(continued 3)

Proof (continued). To establish monotonicity, we again observe that
WLOG f and g can be taken as finite on E. Define h=g — f on E (and
so h is nonnegative WLOG on E; we are avoiding oo — oo here). By
linearity of integration for integrable functions (part (a)) and monotonicity
for nonnegative functions (Theorem 4.10),

Le-[f = [te=nbypnia)
_ /Eh

> 0 by Theorem 4.10,

or [(f< [r8. O
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Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable

subsets of E. Then
/ f o / f 4 / f.
AUB A B
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Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable

subsets of E. Then
/ f o / f 4 / f.
AUB A B

Proof. First, we have (pointwise) that |f - xa| < |f| and |f - xg| < |f| on
E.
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Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable

subsets of E. Then
/ f o / f 4 / f.
AUB A B

Proof. First, we have (pointwise) that |f - xa| < |f| and |f - xg| < |f| on
E. By the Integral Comparison Test (Proposition 4.16), the measurable
function f - x4 and f - xg are integrable over E. Since A and B are
disjoint, then f - xaus =f - xa+f - xg on E.
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Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable

subsets of E. Then
/ f o / f 4 / f.
AUB A B

Proof. First, we have (pointwise) that |f - xa| < |f| and |f - xg| < |f| on
E. By the Integral Comparison Test (Proposition 4.16), the measurable
function f - x4 and f - xg are integrable over E. Since A and B are
disjoint, then f - xaus = f - xa + f - x5 on E. By Exercise 4.28, for any
CeM,CCE, fc f = Jz(f - xc). The result follows from linearity for
integrable functions (Theorem 4.17). O
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Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that
|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+
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Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that
|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+

Proof. Since |f,| < g on E and {f,} — f a.e. on E, then |f| < g a.e. on
E. Since g is integrable over E, by the Integral Comparison Test
(Proposition 4.16), f and each f, are integrable over E.
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Theorem. The Lebesgue Dominated Convergence Theorem.

Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that
|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+

Proof. Since |f,| < g on E and {f,} — f a.e. on E, then |f| < g a.e. on
E. Since g is integrable over E, by the Integral Comparison Test
(Proposition 4.16), f and each f, are integrable over E. By Proposition
4.15, WLOG f and each f, are finite on E. Therefore, functions g — f and
g — f, for each n are “properly defined” (i.e., there is no oo — oo here),
nonnegative and measurable. Moreover, the sequence {g — f,} converges
pointwise a.e. on E to g — f.
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Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that
|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+

Proof. Since |f,| < g on E and {f,} — f a.e. on E, then |f| < g a.e. on
E. Since g is integrable over E, by the Integral Comparison Test
(Proposition 4.16), f and each f, are integrable over E. By Proposition
4.15, WLOG f and each f, are finite on E. Therefore, functions g — f and
g — f, for each n are “properly defined” (i.e., there is no oo — oo here),
nonnegative and measurable. Moreover, the sequence {g — f,} converges
pointwise a.e. on E to g — f. By Fatou's Lemma,

[e(g = f) <liminf ([z(g — f)).
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Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem
(continued)

Theorem. The Lebesgue Dominated Convergence Theorem.
Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that

|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+

Proof (continued). By linearity of integration (Theorem 4.17),

/Eg—/Ef:/E(g—f)gnminf(/E(g—fn)) :/Eg—limsup </Ef>

That is, limsup (fE f,,) < Jef.
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Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem
(continued)

Theorem. The Lebesgue Dominated Convergence Theorem.
Let {f,} be a sequence of measurable functions on E. Suppose there is a
function g that is integrable over E and dominates {f,} in the sense that

|fa] < g on E for all n. If {f,} — f pointwise a.e. on E, then f is
integrable over E and

jim (fo0) = [ Qims) = [+

Proof (continued). By linearity of integration (Theorem 4.17),

/Eg—/Ef:/E(g—f)gnminf(/E(g—fn)) :/Eg—limsup </Ef)

That is, limsup ([ ) < [ f. Similarly, considering {g -+ f,}, we have
Je f <liminf (fE fn) and the result follows. O
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