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Proposition 4.14

Proposition 4.14

Proposition 4.14. Let f be a measurable function on E . Then f + and f −

are integrable over E if and only if |f | is integrable over E .

Proof. Suppose f + and f − are integrable over E ; that is,
∫
E f + < ∞ and∫

E f − < ∞.

Now f + and f − are nonnegative, so by the linearity of
integration of nonnegative functions (Theorem 4.10),∫

E
|f | =

∫
E
(f + + f −) =

∫
E

f + +

∫
E

f − < ∞

and |f | is integrable over E .

Suppose |f | is integrable over E ; that is,
∫
E |f | < ∞. Now 0 ≤ f + ≤ |f |

and 0 ≤ f − ≤ |f | on E , so by monotonicity of integration for nonnegative
functions (Theorem 4.10),

0 ≤
∫

E
f + ≤

∫
E
|f | < ∞ and 0 ≤

∫
E

f − ≤
∫

E
|f | < ∞.

Then f + and f − are integrable over E .
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Proposition 4.15

Proposition 4.15. Let f be integrable over E . Then f is finite a.e. on E

and

∫
E

f =

∫
E\E0

f if E0 ⊂ E and m(E0) = 0.

Proof. By Proposition 4.13, |f | is finite a.e. on E . So f is finite a.e. on E ,
as claimed.

Next,∫
E

f =

∫
E

f + −
∫

E
f − by definition of

∫
E

f

=

∫
E\E0

f + −
∫

E\E0

f − by additivity of integration (Theorem 4.11)

=

∫
E\E0

f by definition of

∫
E\E0

f .

The claim holds.
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Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.
Let f be a measurable function on E . Suppose there is a nonnegative
function g that is integrable over E and |f | ≤ g on E . Then f is
integrable over E and

∣∣∫
E f

∣∣ ≤ ∫
E |f |.

Proof. By monotonicity of integration for nonnegative functions
(Theorem 4.10), |f | is integrable and so by Proposition 4.14, f is
integrable.

Therefore∣∣∣∣∫
E

f

∣∣∣∣ =

∣∣∣∣∫
E

f + −
∫

E
f −

∣∣∣∣ by definition

≤
(∫

E
f +

)
+

(∫
E

f −
)

by the triangle inequality on R

=

∫
E
(f + + f −) by linearity for nonnegative functions (Thm. 4.10)

=

∫
E
|f |.
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E . Then for any α and β, the
function αf + βg is integrable over E and∫

E
(αf + βg) = α

∫
E

f + β

∫
E

g .

Also, if f ≤ g on E , then

∫
E

f ≤
∫

E
g .

Proof. If α > 0, then (αf )+ = αf + and (αf )− = αf −. If α < 0, then
(αf )+ = −αf − and (αf )− = −αf +.

So for α > 0,∫
E

αf =

∫
E
((αf )+ − (αf )−) =

∫
E
(αf )+ −

∫
E
(αf )− by definition

=

∫
E

αf + −
∫

E
αf − = α

∫
E

f + − α

∫
E

f − by linearity (Thm. 4.10)

= α

(∫
E

f + −
∫

E
f −

)
= α

∫
E

f by definition.
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17 (continued 1)

Proof (continued). For α < 0,∫
E

αf =

∫
E
((αf )+ − (αf )−)

=

∫
E
(αf )+ −

∫
E
(αf )− by definition

=

∫
E
(−αf −)−

∫
E
(−αf +)

= (−α)

∫
E

f − − (−α)

∫
E

f + by linearity (Theorem 4.10)

= α

(
−

∫
E

f − +

∫
E

f +

)
= α

∫
E

f by definition.

To complete the proof of linearity, we need to show that∫
E (f + g) = (

∫
E f ) + (

∫
E g). By linearity for nonnegative functions

(Theorem 4.10), |f |+ |g | is integrable over E .
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17 (continued 2)

Proof (continued). Pointwise, |f + g | ≤ |f |+ |g | on E , then by the
Integral Comparison Test (Proposition 4.16),
|
∫
E (f + g)| ≤

∫
E |f + g | ≤

∫
E |f |+

∫
E |g | and f + g is integrable over E .

By Proposition 4.15, f + g is finite a.e. on E and f and g are finite a.e. on
E . So WLOG, f and g are finite on E . Now
(f + g)+ − (f + g)− = f + g = (f + − f −) + (g+ − g−) on E and so
(f + g)+ + f − + g− = (f + g)− + f + + g+ on E . So by linearity of
integration (Theorem 4.10),∫

E
(f + g)+ +

∫
E

f − +

∫
E

g− =

∫
E
(f + g)− +

∫
E

f + +

∫
E

g+.

Since f , g , and f + g are integrable over E , each of these integrals is
finite.

Rearranging, we have∫
E

f + −
∫

E
f − +

∫
E

g+ −
∫

E
g− =

∫
E
(f + g)+ −

∫
E
(f + g)−

or
∫
E f +

∫
E g =

∫
E (f + g). This establishes linearity.
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Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration
(continued 3)

Proof (continued). To establish monotonicity, we again observe that
WLOG f and g can be taken as finite on E . Define h = g − f on E (and
so h is nonnegative WLOG on E ; we are avoiding ∞−∞ here). By
linearity of integration for integrable functions (part (a)) and monotonicity
for nonnegative functions (Theorem 4.10),∫

E
g −

∫
E

f =

∫
E
(g − f ) by part(a)

=

∫
E

h

≥ 0 by Theorem 4.10,

or
∫
E f ≤

∫
E g .
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Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E . Assume A and B are disjoint measurable
subsets of E . Then ∫

A∪·B
f =

∫
A

f +

∫
B

f .

Proof. First, we have (pointwise) that |f · χA| ≤ |f | and |f · χB | ≤ |f | on
E .

By the Integral Comparison Test (Proposition 4.16), the measurable
function f · χA and f · χB are integrable over E . Since A and B are
disjoint, then f · χA∪·B = f · χA + f · χB on E . By Exercise 4.28, for any
C ∈M, C ⊂ E ,

∫
C f =

∫
E (f · χC ). The result follows from linearity for

integrable functions (Theorem 4.17).
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Let f be integrable over E . Assume A and B are disjoint measurable
subsets of E . Then ∫

A∪·B
f =

∫
A

f +

∫
B

f .

Proof. First, we have (pointwise) that |f · χA| ≤ |f | and |f · χB | ≤ |f | on
E . By the Integral Comparison Test (Proposition 4.16), the measurable
function f · χA and f · χB are integrable over E . Since A and B are
disjoint, then f · χA∪·B = f · χA + f · χB on E . By Exercise 4.28, for any
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Theorem. The Lebesgue Dominated Convergence Theorem.
Let {fn} be a sequence of measurable functions on E . Suppose there is a
function g that is integrable over E and dominates {fn} in the sense that
|fn| ≤ g on E for all n. If {fn} → f pointwise a.e. on E , then f is
integrable over E and

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn

)
=

∫
E

f .

Proof. Since |fn| ≤ g on E and {fn} → f a.e. on E , then |f | ≤ g a.e. on
E . Since g is integrable over E , by the Integral Comparison Test
(Proposition 4.16), f and each fn are integrable over E .

By Proposition
4.15, WLOG f and each fn are finite on E . Therefore, functions g − f and
g − fn for each n are “properly defined” (i.e., there is no ∞−∞ here),
nonnegative and measurable. Moreover, the sequence {g − fn} converges
pointwise a.e. on E to g − f . By Fatou’s Lemma,∫
E (g − f ) ≤ lim inf

(∫
E (g − fn)

)
.
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Theorem. The Lebesgue Dominated Convergence Theorem
(continued)

Theorem. The Lebesgue Dominated Convergence Theorem.
Let {fn} be a sequence of measurable functions on E . Suppose there is a
function g that is integrable over E and dominates {fn} in the sense that
|fn| ≤ g on E for all n. If {fn} → f pointwise a.e. on E , then f is
integrable over E and

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn

)
=

∫
E

f .

Proof (continued). By linearity of integration (Theorem 4.17),∫
E

g−
∫

E
f =

∫
E
(g−f ) ≤ lim inf

(∫
E
(g − fn)

)
=

∫
E

g−lim sup

(∫
E

fn

)
.

That is, lim sup
(∫

E fn
)
≤

∫
E f . Similarly, considering {g + fn}, we have∫

E f ≤ lim inf
(∫

E fn
)

and the result follows.
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Theorem. The Lebesgue Dominated Convergence Theorem.
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