Real Analysis

Chapter 4. Lebesgue Integration

4.4. The General Lebesgue Integral—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick

Table of contents

(1) Proposition 4.14
(2) Proposition 4.15
(3) Proposition 4.16. The Integral Comparison Test
(4) Theorem 4.17. Linearity and Monotonicity of Integration
(5) Corollary 4.18. Additivity Over Domains of Integration
(6) Theorem. The Lebesgue Dominated Convergence Theorem

Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then f^{+}and f^{-} are integrable over E if and only if $|f|$ is integrable over E.

Proof. Suppose f^{+}and f^{-}are integrable over E; that is, $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$.

Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then f^{+}and f^{-} are integrable over E if and only if $|f|$ is integrable over E.

Proof. Suppose f^{+}and f^{-}are integrable over E; that is, $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$. Now f^{+}and f^{-}are nonnegative, so by the linearity of integration of nonnegative functions (Theorem 4.10),

$$
\int_{E}|f|=\int_{E}\left(f^{+}+f^{-}\right)=\int_{E} f^{+}+\int_{E} f^{-}<\infty
$$

and $|f|$ is integrable over E.

Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then f^{+}and f^{-} are integrable over E if and only if $|f|$ is integrable over E.

Proof. Suppose f^{+}and f^{-}are integrable over E; that is, $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$. Now f^{+}and f^{-}are nonnegative, so by the linearity of integration of nonnegative functions (Theorem 4.10),

$$
\int_{E}|f|=\int_{E}\left(f^{+}+f^{-}\right)=\int_{E} f^{+}+\int_{E} f^{-}<\infty
$$

and $|f|$ is integrable over E.
Suppose $|f|$ is integrable over E; that is, $\int_{E}|f|<\infty$.

Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then f^{+}and f^{-} are integrable over E if and only if $|f|$ is integrable over E.

Proof. Suppose f^{+}and f^{-}are integrable over E; that is, $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$. Now f^{+}and f^{-}are nonnegative, so by the linearity of integration of nonnegative functions (Theorem 4.10),

$$
\int_{E}|f|=\int_{E}\left(f^{+}+f^{-}\right)=\int_{E} f^{+}+\int_{E} f^{-}<\infty
$$

and $|f|$ is integrable over E.
Suppose $|f|$ is integrable over E; that is, $\int_{E}|f|<\infty$. Now $0 \leq f^{+} \leq|f|$ and $0 \leq f^{-} \leq|f|$ on E, so by monotonicity of integration for nonnegative functions (Theorem 4.10),

[^0]
Proposition 4.14

Proposition 4.14. Let f be a measurable function on E. Then f^{+}and f^{-} are integrable over E if and only if $|f|$ is integrable over E.

Proof. Suppose f^{+}and f^{-}are integrable over E; that is, $\int_{E} f^{+}<\infty$ and $\int_{E} f^{-}<\infty$. Now f^{+}and f^{-}are nonnegative, so by the linearity of integration of nonnegative functions (Theorem 4.10),

$$
\int_{E}|f|=\int_{E}\left(f^{+}+f^{-}\right)=\int_{E} f^{+}+\int_{E} f^{-}<\infty
$$

and $|f|$ is integrable over E.
Suppose $|f|$ is integrable over E; that is, $\int_{E}|f|<\infty$. Now $0 \leq f^{+} \leq|f|$ and $0 \leq f^{-} \leq|f|$ on E, so by monotonicity of integration for nonnegative functions (Theorem 4.10),

$$
0 \leq \int_{E} f^{+} \leq \int_{E}|f|<\infty \text { and } 0 \leq \int_{E} f^{-} \leq \int_{E}|f|<\infty
$$

Then f^{+}and f^{-}are integrable over E.

Proposition 4.15

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E and $\int_{E} f=\int_{E \backslash E_{0}} f$ if $E_{0} \subset E$ and $m\left(E_{0}\right)=0$.

Proof. By Proposition 4.13, $|f|$ is finite a.e. on E. So f is finite a.e. on E, as claimed.

Proposition 4.15

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E and $\int_{E} f=\int_{E \backslash E_{0}} f$ if $E_{0} \subset E$ and $m\left(E_{0}\right)=0$.

Proof. By Proposition 4.13, $|f|$ is finite a.e. on E. So f is finite a.e. on E, as claimed. Next,

The claim holds.

Proposition 4.15

Proposition 4.15. Let f be integrable over E. Then f is finite a.e. on E and $\int_{E} f=\int_{E \backslash E_{0}} f$ if $E_{0} \subset E$ and $m\left(E_{0}\right)=0$.

Proof. By Proposition 4.13, $|f|$ is finite a.e. on E. So f is finite a.e. on E, as claimed. Next,

$$
\begin{aligned}
\int_{E} f & =\int_{E} f^{+}-\int_{E} f^{-} \text {by definition of } \int_{E} f \\
& =\int_{E \backslash E_{0}} f^{+}-\int_{E \backslash E_{0}} f^{-} \text {by additivity of integration (Theorem 4.11) } \\
& =\int_{E \backslash E_{0}} f \text { by definition of } \int_{E \backslash E_{0}} f .
\end{aligned}
$$

The claim holds.

Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative function g that is integrable over E and $|f| \leq g$ on E. Then f is integrable over E and $\left|\int_{E} f\right| \leq \int_{E}|f|$.
Proof. By monotonicity of integration for nonnegative functions (Theorem 4.10), $|f|$ is integrable and so by Proposition 4.14, f is integrable.

Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative function g that is integrable over E and $|f| \leq g$ on E. Then f is integrable over E and $\left|\int_{E} f\right| \leq \int_{E}|f|$.
Proof. By monotonicity of integration for nonnegative functions (Theorem 4.10), $|f|$ is integrable and so by Proposition 4.14, f is integrable. Therefore

Proposition 4.16. The Integral Comparison Test

Proposition 4.16. The Integral Comparison Test.

Let f be a measurable function on E. Suppose there is a nonnegative function g that is integrable over E and $|f| \leq g$ on E. Then f is integrable over E and $\left|\int_{E} f\right| \leq \int_{E}|f|$.
Proof. By monotonicity of integration for nonnegative functions (Theorem 4.10), $|f|$ is integrable and so by Proposition 4.14, f is integrable. Therefore

$$
\begin{aligned}
\left|\int_{E} f\right| & =\left|\int_{E} f^{+}-\int_{E} f^{-}\right| \text {by definition } \\
& \leq\left(\int_{E} f^{+}\right)+\left(\int_{E} f^{-}\right) \text {by the triangle inequality on } \mathbb{R} \\
& =\int_{E}\left(f^{+}+f^{-}\right) \text {by linearity for nonnegative functions (Thm. 4.10) } \\
& =\int_{E}|f|
\end{aligned}
$$

Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any α and β, the function $\alpha f+\beta g$ is integrable over E and

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g .
$$

Also, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. If $\alpha>0$, then $(\alpha f)^{+}=\alpha f^{+}$and $(\alpha f)^{-}=\alpha f^{-}$. If $\alpha<0$, then $(\alpha f)^{+}=-\alpha f^{-}$and $(\alpha f)^{-}=-\alpha f^{+}$.

Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any α and β, the function $\alpha f+\beta g$ is integrable over E and

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g .
$$

Also, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. If $\alpha>0$, then $(\alpha f)^{+}=\alpha f^{+}$and $(\alpha f)^{-}=\alpha f^{-}$. If $\alpha<0$, then $(\alpha f)^{+}=-\alpha f^{-}$and $(\alpha f)^{-}=-\alpha f^{+}$. So for $\alpha>0$,

Theorem 4.17. Linearity and Monotonicity of Integration

Theorem 4.17. Linearity and Monotonicity of Integration.
Let the functions f and g be integrable over E. Then for any α and β, the function $\alpha f+\beta g$ is integrable over E and

$$
\int_{E}(\alpha f+\beta g)=\alpha \int_{E} f+\beta \int_{E} g
$$

Also, if $f \leq g$ on E, then $\int_{E} f \leq \int_{E} g$.
Proof. If $\alpha>0$, then $(\alpha f)^{+}=\alpha f^{+}$and $(\alpha f)^{-}=\alpha f^{-}$. If $\alpha<0$, then $(\alpha f)^{+}=-\alpha f^{-}$and $(\alpha f)^{-}=-\alpha f^{+}$. So for $\alpha>0$, $\int_{E} \alpha f=\int_{E}\left((\alpha f)^{+}-(\alpha f)^{-}\right)=\int_{E}(\alpha f)^{+}-\int_{E}(\alpha f)^{-}$by definition
$=\int_{E} \alpha f^{+}-\int_{E} \alpha f^{-}=\alpha \int_{E} f^{+}-\alpha \int_{E} f^{-}$by linearity (Thm. 4.10)
$=\alpha\left(\int_{E} f^{+}-\int_{E} f^{-}\right)=\alpha \int_{E} f$ by definition.

Theorem 4.17 (continued 1)

Proof (continued). For $\alpha<0$,

$$
\begin{aligned}
\int_{E} \alpha f & =\int_{E}\left((\alpha f)^{+}-(\alpha f)^{-}\right) \\
& =\int_{E}(\alpha f)^{+}-\int_{E}(\alpha f)^{-} \text {by definition } \\
& =\int_{E}\left(-\alpha f^{-}\right)-\int_{E}\left(-\alpha f^{+}\right) \\
& =(-\alpha) \int_{E} f^{-}-(-\alpha) \int_{E} f^{+} \text {by linearity (Theorem 4.10) } \\
& =\alpha\left(-\int_{E} f^{-}+\int_{E} f^{+}\right)=\alpha \int_{E} f \text { by definition. }
\end{aligned}
$$

Theorem 4.17 (continued 1)

Proof (continued). For $\alpha<0$,

$$
\begin{aligned}
\int_{E} \alpha f & =\int_{E}\left((\alpha f)^{+}-(\alpha f)^{-}\right) \\
& =\int_{E}(\alpha f)^{+}-\int_{E}(\alpha f)^{-} \text {by definition } \\
& =\int_{E}\left(-\alpha f^{-}\right)-\int_{E}\left(-\alpha f^{+}\right) \\
& =(-\alpha) \int_{E} f^{-}-(-\alpha) \int_{E} f^{+} \text {by linearity (Theorem 4.10) } \\
& =\alpha\left(-\int_{E} f^{-}+\int_{E} f^{+}\right)=\alpha \int_{E} f \text { by definition. }
\end{aligned}
$$

To complete the proof of linearity, we need to show that $\int_{E}(f+g)=\left(\int_{E} f\right)+\left(\int_{E} g\right)$. By linearity for nonnegative functions (Theorem 4.10), $|f|+|g|$ is integrable over E.

Theorem 4.17 (continued 1)

Proof (continued). For $\alpha<0$,

$$
\begin{aligned}
\int_{E} \alpha f & =\int_{E}\left((\alpha f)^{+}-(\alpha f)^{-}\right) \\
& =\int_{E}(\alpha f)^{+}-\int_{E}(\alpha f)^{-} \text {by definition } \\
& =\int_{E}\left(-\alpha f^{-}\right)-\int_{E}\left(-\alpha f^{+}\right) \\
& =(-\alpha) \int_{E} f^{-}-(-\alpha) \int_{E} f^{+} \text {by linearity (Theorem 4.10) } \\
& =\alpha\left(-\int_{E} f^{-}+\int_{E} f^{+}\right)=\alpha \int_{E} f \text { by definition. }
\end{aligned}
$$

To complete the proof of linearity, we need to show that $\int_{E}(f+g)=\left(\int_{E} f\right)+\left(\int_{E} g\right)$. By linearity for nonnegative functions (Theorem 4.10), $|f|+|g|$ is integrable over E.

Theorem 4.17 (continued 2)

Proof (continued). Pointwise, $|f+g| \leq|f|+|g|$ on E, then by the Integral Comparison Test (Proposition 4.16),
$\left|\int_{E}(f+g)\right| \leq \int_{E}|f+g| \leq \int_{E}|f|+\int_{E}|g|$ and $f+g$ is integrable over E. By Proposition 4.15, $f+g$ is finite a.e. on E and f and g are finite a.e. on E. So WLOG, f and g are finite on E. Now

Since f, g, and $f+g$ are integrable over E, each of these integrals is finite.

Theorem 4.17 (continued 2)

Proof (continued). Pointwise, $|f+g| \leq|f|+|g|$ on E, then by the Integral Comparison Test (Proposition 4.16),
$\left|\int_{E}(f+g)\right| \leq \int_{E}|f+g| \leq \int_{E}|f|+\int_{E}|g|$ and $f+g$ is integrable over E. By Proposition 4.15, $f+g$ is finite a.e. on E and f and g are finite a.e. on E. So WLOG, f and g are finite on E. Now $(f+g)^{+}-(f+g)^{-}=f+g=\left(f^{+}-f^{-}\right)+\left(g^{+}-g^{-}\right)$on E and so $(f+g)^{+}+f^{-}+g^{-}=(f+g)^{-}+f^{+}+g^{+}$on E. So by linearity of integration (Theorem 4.10),

$$
\int_{E}(f+g)^{+}+\int_{E} f^{-}+\int_{E} g^{-}=\int_{E}(f+g)^{-}+\int_{E} f^{+}+\int_{E} g^{+} .
$$

Since f, g, and $f+g$ are integrable over E, each of these integrals is finite. Rearranging, we have

or $\int_{E} f+\int_{E} g=\int_{E}(f+g)$. This establishes linearity.

Theorem 4.17 (continued 2)

Proof (continued). Pointwise, $|f+g| \leq|f|+|g|$ on E, then by the Integral Comparison Test (Proposition 4.16),
$\left|\int_{E}(f+g)\right| \leq \int_{E}|f+g| \leq \int_{E}|f|+\int_{E}|g|$ and $f+g$ is integrable over E. By Proposition 4.15, $f+g$ is finite a.e. on E and f and g are finite a.e. on
E. So WLOG, f and g are finite on E. Now $(f+g)^{+}-(f+g)^{-}=f+g=\left(f^{+}-f^{-}\right)+\left(g^{+}-g^{-}\right)$on E and so $(f+g)^{+}+f^{-}+g^{-}=(f+g)^{-}+f^{+}+g^{+}$on E. So by linearity of integration (Theorem 4.10),

$$
\int_{E}(f+g)^{+}+\int_{E} f^{-}+\int_{E} g^{-}=\int_{E}(f+g)^{-}+\int_{E} f^{+}+\int_{E} g^{+} .
$$

Since f, g, and $f+g$ are integrable over E, each of these integrals is finite. Rearranging, we have

$$
\int_{E} f^{+}-\int_{E} f^{-}+\int_{E} g^{+}-\int_{E} g^{-}=\int_{E}(f+g)^{+}-\int_{E}(f+g)^{-}
$$

or $\int_{E} f+\int_{E} g=\int_{E}(f+g)$. This establishes linearity.

Theorem 4.17. Linearity and Monotonicity of Integration (continued 3)

Proof (continued). To establish monotonicity, we again observe that WLOG f and g can be taken as finite on E. Define $h=g-f$ on E (and so h is nonnegative WLOG on E; we are avoiding $\infty-\infty$ here). By linearity of integration for integrable functions (part (a)) and monotonicity for nonnegative functions (Theorem 4.10),

$$
\begin{aligned}
\int_{E} g-\int_{E} f & =\int_{E}(g-f) \text { by part(a) } \\
& =\int_{E} h \\
& \geq 0 \text { by Theorem 4.10 }
\end{aligned}
$$

or $\int_{E} f \leq \int_{E} g$.

Theorem 4.17. Linearity and Monotonicity of Integration (continued 3)

Proof (continued). To establish monotonicity, we again observe that WLOG f and g can be taken as finite on E. Define $h=g-f$ on E (and so h is nonnegative WLOG on E; we are avoiding $\infty-\infty$ here). By linearity of integration for integrable functions (part (a)) and monotonicity for nonnegative functions (Theorem 4.10),

$$
\begin{aligned}
\int_{E} g-\int_{E} f & =\int_{E}(g-f) \text { by part(a) } \\
& =\int_{E} h \\
& \geq 0 \text { by Theorem 4.10 }
\end{aligned}
$$

or $\int_{E} f \leq \int_{E} g$.

Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.

Let f be integrable over E. Assume A and B are disjoint measurable subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

Proof. First, we have (pointwise) that $\left|f \cdot \chi_{A}\right| \leq|f|$ and $\left|f \cdot \chi_{B}\right| \leq|f|$ on

Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

Proof. First, we have (pointwise) that $\left|f \cdot \chi_{A}\right| \leq|f|$ and $\left|f \cdot \chi_{B}\right| \leq|f|$ on E. By the Integral Comparison Test (Proposition 4.16), the measurable function $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are integrable over E. Since A and B are disjoint, then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$ on E.

Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

Proof. First, we have (pointwise) that $\left|f \cdot \chi_{A}\right| \leq|f|$ and $\left|f \cdot \chi_{B}\right| \leq|f|$ on E. By the Integral Comparison Test (Proposition 4.16), the measurable function $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are integrable over E. Since A and B are disjoint, then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$ on E. By Exercise 4.28, for any $C \in \mathcal{M}, C \subset E, \int_{C} f=\int_{E}\left(f \cdot \chi_{C}\right)$. The result follows from linearity for integrable functions (Theorem 4.17).

Corollary 4.18. Additivity Over Domains of Integration

Corollary 4.18. Additivity Over Domains of Integration.
Let f be integrable over E. Assume A and B are disjoint measurable subsets of E. Then

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

Proof. First, we have (pointwise) that $\left|f \cdot \chi_{A}\right| \leq|f|$ and $\left|f \cdot \chi_{B}\right| \leq|f|$ on E. By the Integral Comparison Test (Proposition 4.16), the measurable function $f \cdot \chi_{A}$ and $f \cdot \chi_{B}$ are integrable over E. Since A and B are disjoint, then $f \cdot \chi_{A \cup B}=f \cdot \chi_{A}+f \cdot \chi_{B}$ on E. By Exercise 4.28, for any $C \in \mathcal{M}, C \subset E, \int_{C} f=\int_{E}\left(f \cdot \chi_{C}\right)$. The result follows from linearity for integrable functions (Theorem 4.17).

Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. Since $\left|f_{n}\right| \leq g$ on E and $\left\{f_{n}\right\} \rightarrow f$ a.e. on E, then $|f| \leq g$ a.e. on E. Since g is integrable over E, by the Integral Comparison Test (Proposition 4.16), f and each f_{n} are integrable over E.

Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f
$$

Proof. Since $\left|f_{n}\right| \leq g$ on E and $\left\{f_{n}\right\} \rightarrow f$ a.e. on E, then $|f| \leq g$ a.e. on E. Since g is integrable over E, by the Integral Comparison Test (Proposition 4.16), f and each f_{n} are integrable over E. By Proposition 4.15, WLOG f and each f_{n} are finite on E. Therefore, functions $g-f$ and $g-f_{n}$ for each n are "properly defined" (i.e., there is no $\infty-\infty$ here), nonnegative and measurable. Moreover, the sequence $\left\{g-f_{n}\right\}$ converges pointwise a.e. on E to $g-f$.

Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. Since $\left|f_{n}\right| \leq g$ on E and $\left\{f_{n}\right\} \rightarrow f$ a.e. on E, then $|f| \leq g$ a.e. on E. Since g is integrable over E, by the Integral Comparison Test (Proposition 4.16), f and each f_{n} are integrable over E. By Proposition 4.15, WLOG f and each f_{n} are finite on E. Therefore, functions $g-f$ and $g-f_{n}$ for each n are "properly defined" (i.e., there is no $\infty-\infty$ here), nonnegative and measurable. Moreover, the sequence $\left\{g-f_{n}\right\}$ converges pointwise a.e. on E to $g-f$. By Fatou's Lemma,

Theorem. The Lebesgue Dominated Convergence Theorem

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f .
$$

Proof. Since $\left|f_{n}\right| \leq g$ on E and $\left\{f_{n}\right\} \rightarrow f$ a.e. on E, then $|f| \leq g$ a.e. on E. Since g is integrable over E, by the Integral Comparison Test (Proposition 4.16), f and each f_{n} are integrable over E. By Proposition 4.15, WLOG f and each f_{n} are finite on E. Therefore, functions $g-f$ and $g-f_{n}$ for each n are "properly defined" (i.e., there is no $\infty-\infty$ here), nonnegative and measurable. Moreover, the sequence $\left\{g-f_{n}\right\}$ converges pointwise a.e. on E to $g-f$. By Fatou's Lemma, $\int_{E}(g-f) \leq \liminf \left(\int_{E}\left(g-f_{n}\right)\right)$.

Theorem. The Lebesgue Dominated Convergence Theorem (continued)

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f
$$

Proof (continued). By linearity of integration (Theorem 4.17),
$\int_{E} g-\int_{E} f=\int_{E}(g-f) \leq \liminf \left(\int_{E}\left(g-f_{n}\right)\right)=\int_{E} g-\limsup \left(\int_{E} f_{n}\right)$.
That is, $\lim \sup \left(\int_{E} f_{n}\right) \leq \int_{E} f$. Similarly, considering $\left\{g+f_{n}\right\}$, we have $\int_{E} f \leq \liminf \left(\int_{E} f_{n}\right)$ and the result follows.

Theorem. The Lebesgue Dominated Convergence Theorem (continued)

Theorem. The Lebesgue Dominated Convergence Theorem.

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on E. Suppose there is a function g that is integrable over E and dominates $\left\{f_{n}\right\}$ in the sense that $\left|f_{n}\right| \leq g$ on E for all n. If $\left\{f_{n}\right\} \rightarrow f$ pointwise a.e. on E, then f is integrable over E and

$$
\lim _{n \rightarrow \infty}\left(\int_{E} f_{n}\right)=\int_{E}\left(\lim _{n \rightarrow \infty} f_{n}\right)=\int_{E} f
$$

Proof (continued). By linearity of integration (Theorem 4.17),
$\int_{E} g-\int_{E} f=\int_{E}(g-f) \leq \liminf \left(\int_{E}\left(g-f_{n}\right)\right)=\int_{E} g-\limsup \left(\int_{E} f_{n}\right)$.
That is, $\lim \sup \left(\int_{E} f_{n}\right) \leq \int_{E} f$. Similarly, considering $\left\{g+f_{n}\right\}$, we have $\int_{E} f \leq \liminf \left(\int_{E} f_{n}\right)$ and the result follows.

[^0]: Then f^{+}and f^{-}are integrable over E

