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Lemma 4.22

Lemma 4.22

Lemma 4.22. Let E be a set of finite measure and § > 0. Then E is the

disjoint union of a finite collection of sets, each of which has measure less
than §.
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Lemma 4.22

Lemma 4.22. Let E be a set of finite measure and § > 0. Then E is the
disjoint union of a finite collection of sets, each of which has measure less

than 6.
Proof. By the Continuity of Measure (Theorem 2.15(ii)),

nIer;o m(E \ [—n,n]) = nILngO m(E N ((—o0,—n) U (n,0))) = m(@) =0,

since E N ((—oo0, —n) U (n,00)) is a descending collection of sets.
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Lemma 4.22

Lemma 4.22. Let E be a set of finite measure and § > 0. Then E is the
disjoint union of a finite collection of sets, each of which has measure less
than §.

Proof. By the Continuity of Measure (Theorem 2.15(ii)),
lim m(E\ [-n,n]) = lim m(E N ((—o0,—n)U(n,))) =m(a) =0,

since E N ((—oo0, —n) U (n,00)) is a descending collection of sets. So by
the definition of limit, there exists ng € N for which m(E \ [—no, no]) < 9.
Now partition [—ng, ng] into subintervals of length less than §, say
producing intervals I, b, ..., Iy.
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Lemma 4.22

Lemma 4.22. Let E be a set of finite measure and § > 0. Then E is the

disjoint union of a finite collection of sets, each of which has measure less
than §.

Proof. By the Continuity of Measure (Theorem 2.15(ii)),
lim m(E\ [-n,n]) = lim m(E N ((—o0,—n)U(n,))) =m(a) =0,

since E N ((—oo0, —n) U (n,00)) is a descending collection of sets. So by
the definition of limit, there exists ng € N for which m(E \ [—no, no]) < 9.
Now partition [—ng, ng] into subintervals of length less than §, say

producing intervals I1, b, ..., Iny. Then E is the disjoint union of
E\[—no,no]l = EN((—o00,—n)N(n,00)), ENh, ENkh, ..., ENly, and
each is of measure less than §. O

Real Analysis November 25, 2020 3 / 14



Proposition 4.23

Proposition 4.23

Proposition 4.23. Let f be a measurable function on E. If f is integrable
over E, then for each ¢ > 0, there is § > 0 for which:

if A C E is measurable and m(A) < d then / If] <e. (26)
A

Conversely, for m(E) < oo, if for each € > 0, there is a 6 > 0 for which
(26) holds, then f is integrable over E.
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Proposition 4.23

Proposition 4.23. Let f be a measurable function on E. If f is integrable
over E, then for each ¢ > 0, there is § > 0 for which:

if A C E is measurable and m(A) < d then / If] <e. (26)
A

Conversely, for m(E) < oo, if for each € > 0, there is a 6 > 0 for which
(26) holds, then f is integrable over E.

Proof. WLOG, we assume f > 0 on E (otherwise, we use an £/2
argument on the positive and negative parts of ). Assume f is integrable
over E and let ¢ > 0.
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Proposition 4.23

Proposition 4.23. Let f be a measurable function on E. If f is integrable
over E, then for each ¢ > 0, there is § > 0 for which:

if A C E is measurable and m(A) < d then / If] <e. (26)
A

Conversely, for m(E) < oo, if for each € > 0, there is a 6 > 0 for which
(26) holds, then f is integrable over E.

Proof. WLOG, we assume f > 0 on E (otherwise, we use an £/2
argument on the positive and negative parts of ). Assume f is integrable
over E and let € > 0. Then, by the definition of the integral of a
nonnegative integrable function, there is a bounded function of finite
support (that is, nonzero on a set of finite measure), say f., for which
0<f.<fonEand0< [.f— [cf <e/2 (recall that [_f is defined as
a supremum over such f£.).
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Proposition 4.23 (continued 1)

Proof (continued). If A C E is measurable then

/f_/fa = /(f—fe) by linearity, Theorem 4.17
A A A

< /(f — f2) by additivity over AUJ (E \ A) since f —f. >0
E

= /f—/ f. by linearity
E E

< % by above.
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Proposition 4.23 (continued 1)

Proof (continued). If A C E is measurable then

/ f— / f. = /(f — f.) by linearity, Theorem 4.17
A A A
< /(f — f.) by additivity over AU (E \ A) since f — . >0
E

= /f—/ f. by linearity
E E

< % by above.

Since f. is bounded, choose M > 0 for which 0 < f, < M on E. So for
A C E measurable,

/ f < </ é) + < by the above inequality
A A 2

< Mm(A) + g
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Proposition 4.23 (continued 2)

Proof (continued). Define 6 = ¢/(2M), and this inequality implies for
m(A) < d =¢/(2M) that [, f < M(e/(2M)) +¢e/2 =«.
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Proposition 4.23 (continued 2)

Proof (continued). Define 6 = ¢/(2M), and this inequality implies for
m(A) < d =¢/(2M) that [, f < M(e/(2M)) +¢e/2 =«.

Conversely, suppose m(E) < oo and suppose that for all € > 0, there is a

0 > 0 for which (26) holds. For e =1, let dp > 0 be the corresponding 0.

Since m(E) < oo, by Lemma 4.22, we may express E as the disjoint union
of a finite collection of measurable subsets {Ek}f(vzl, each of measure less
than dg.
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Proposition 4.23 (continued 2)

Proof (continued). Define 6 = ¢/(2M), and this inequality implies for
m(A) < d =¢/(2M) that [, f < M(e/(2M)) +¢e/2 =«.

Conversely, suppose m(E) < oo and suppose that for all € > 0, there is a

0 > 0 for which (26) holds. For e =1, let dp > 0 be the corresponding 0.

Since m(E) < oo, by Lemma 4.22, we may express E as the disjoint union
of a finite collection of measurable subsets {E,}N_,, each of measure less
than dg. Therefore (by additivity, Theorem 4.11, and since ¢ = 1),

N
k=

/E\f|=LEk|f|=zAI:</Ek|f><§:1(1):N.

k=1

So f is integrable over E. O
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Proposition 4.24

Proposition 4.24. Let {f}]_, be a finite collection of functions, each of
which is integrable over E. Then {fi}]_; is uniformly integrable.
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Proposition 4.24

Proposition 4.24. Let {f}]_, be a finite collection of functions, each of
which is integrable over E. Then {fi}]_; is uniformly integrable.

Proof. Let € > 0. Since each fi is integrable over E, by Proposition 4.23

we have for each 1 < k < n that there exists §; > 0 such that if AC E is
measurable and m(A) < dy then [, |fi| <e.
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Proposition 4.24

Proposition 4.24. Let {f}]_, be a finite collection of functions, each of
which is integrable over E. Then {fi}]_; is uniformly integrable.

Proof. Let € > 0. Since each fi is integrable over E, by Proposition 4.23
we have for each 1 < k < n that there exists §; > 0 such that if AC E is
measurable and m(A) < dy then [, |fi| < e. Let § = min{d1,02,...,dn}.

Then with A C E where m(A) < 6 we have [, |fi| < e foreach 1 < k <n
and so the family F = {f}]_; is uniformly integrable, as claimed. O]
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Proposition 4.25

Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of

functions {£,}22 ; be uniformly integrable over E. If {f,} — f pointwise
a.e. on E, then f is integrable over E.
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Proposition 4.25

Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of

functions {£,}22 ; be uniformly integrable over E. If {f,} — f pointwise
a.e. on E, then f is integrable over E.

Proof. First, by Proposition 3.9, f is measurable.
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Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of
functions {£,}22 ; be uniformly integrable over E. If {f,} — f pointwise
a.e. on E, then f is integrable over E.

Proof. First, by Proposition 3.9, f is measurable. Let e = 1 and let

0o > 0 be the corresponding § > 0 given by the definition of uniform
integrability. Since E has finite measure, by Lemma 4.22, we may express
E as a disjoint union of a finite collection of measurable sets {Ek}L\’Zl such
that m(Ey) < dp for 1 < k < N.
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Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of
functions {£,}22 ; be uniformly integrable over E. If {f,} — f pointwise
a.e. on E, then f is integrable over E.

Proof. First, by Proposition 3.9, f is measurable. Let e = 1 and let

0o > 0 be the corresponding § > 0 given by the definition of uniform
integrability. Since E has finite measure, by Lemma 4.22, we may express
E as a disjoint union of a finite collection of measurable sets {Ek}L\’Zl such
that m(Ex) < 0o for 1 < k < N. Then (by additivity, Theorem 4.11, and
since € = 1)

N
k=

/E|fn\:/UEk\fn:i</Ekyfn|> < @=N.

k=1 1
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Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of
functions {£,}22 ; be uniformly integrable over E. If {f,} — f pointwise
a.e. on E, then f is integrable over E.

Proof. First, by Proposition 3.9, f is measurable. Let e = 1 and let

0o > 0 be the corresponding § > 0 given by the definition of uniform
integrability. Since E has finite measure, by Lemma 4.22, we may express
E as a disjoint union of a finite collection of measurable sets {Ek}L\’Zl such
that m(Ex) < 0o for 1 < k < N. Then (by additivity, Theorem 4.11, and
since € = 1)

/E|fn\:/UEk\fn:i</Ekyfn|> S W-n

k=1 k=1

So, by Fatou’s Lemma, [ |f| <liminf [ |f,] < N. So |f] is integrable
over E and so (by definition) f is integrable over E. O
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The Vitali Convergence Theorem

The Vitali Convergence Theorem.
Let E be of finite measure. Suppose sequence {f,} is uniformly integrable
over E. If {f,} — f pointwise a.e. on E, then f is integrable over E and

jim (fo6) = [ Qims) = [+
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The Vitali Convergence Theorem

The Vitali Convergence Theorem

The Vitali Convergence Theorem.

Let E be of finite measure. Suppose sequence {f,} is uniformly integrable
over E. If {f,} — f pointwise a.e. on E, then f is integrable over E and

jim (fo6) = [ Qims) = [+

Proof. By Proposition 4.25, f is integrable over E. So by Proposition
4.15, f is finite a.e. on E.
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The Vitali Convergence Theorem

The Vitali Convergence Theorem.
Let E be of finite measure. Suppose sequence {f,} is uniformly integrable
over E. If {f,} — f pointwise a.e. on E, then f is integrable over E and

jim (fo6) = [ Qims) = [+

Proof. By Proposition 4.25, f is integrable over E. So by Proposition
4.15, f is finite a.e. on E. Also by Proposition 4.15, we can “excise” a
subset of E of measure 0 (on which the pointwise convergence does not
hold) and assume WLOG that f is real valued (as opposed to extended
real valued) and that the convergence is pointwise on all of E.
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The Vitali Convergence Theorem (continued 1)

Proof (continued). For measurable AC E and n € N

e -

< / |f, — f| by Proposition 4.16,
E

/(fn - f)‘ by linearity, Theorem 4.17
E

the Integral Comparison Test

= / |fy — f| +/ |f, — f| by additivity, Theorem 4.11
E\A A

< / |fo — f| + /(|fn\ + |f|) by the Triangle Inequality
E\A A

and Monotonicity (Theorem 4.10)
= / |f, — f| +/ |fnl +/ |f| by linearity. (29)
E\A A A
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The Vitali Convergence Theorem (continued 2)

Proof (continued). Let ¢ > 0.
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The Vitali Convergence Theorem (continued 2)

Proof (continued). Let ¢ > 0. Since {f,} is uniformly integrable, there is
0 > 0 such that

/ |fa] < e/3 forall neN
A

and any measurable A C E with m(A) < é. (%)
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The Vitali Convergence Theorem (continued 2)

Proof (continued). Let ¢ > 0. Since {f,} is uniformly integrable, there is
0 > 0 such that

/ |fa] < e/3 forall neN
A

and any measurable A C E with m(A) < é. (%)

/|f|§|iminf/|f,,]§€. ()
A A 3

By Fatou's Lemma
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The Vitali Convergence Theorem (continued 2)

Proof (continued). Let ¢ > 0. Since {f,} is uniformly integrable, there is
0 > 0 such that
/ |fa] < e/3 forall neN
A

and any measurable A C E with m(A) < é. (%)

/|f|§|iminf/|f,,]§€. ()
A A 3

Since f is real-valued and E has finite measure, then by Egoroff’s Theorem,
there is Eg C E with m(Ep) < 6 and {f,} — f uniformly on E \ Ey. So
there is N € N such that |f, — f| < ¢/(3m(E)) on E \ Eg for all n > N.

By Fatou's Lemma
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The Vitali Convergence Theorem (continued 3)

Proof (continued). With A = Ej in (29) we have for n > N,

/@_/ﬁ‘ ‘/ m_ﬂ+/‘m+/ﬂ
E E E\Eg Eo Eo

<3mE(E)> m(E \ Eo) + % + g by (x) and (xx)

E.

IN
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The Vitali Convergence Theorem (continued 3)

Proof (continued). With A = Ej in (29) we have for n > N,

ol = e Lo L
E E E\Eg Eo Eo
€ e €
<3m(E)>m(E\E0)+3+3by(*)and(**)
< e
So [efo— Jef. u

Real Analysis November 25, 2020 12 / 14



Theorem 4.26

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence
of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

n—oo

lim (/ h,,) = 0 if and only if {h,} is uniformly integrable over E.
E
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Theorem 4.26

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence

of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

lim (/ h,,) = 0 if and only if {h,} is uniformly integrable over E.
E

n—oo

Proof. If {h,} is uniformly integrable, then by the Vitali Convergence
Theorem, lim,_oo( [z hn) = [ (limp—oo hy) = [0 =0.
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Theorem 4.26

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence

of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

n—oo

lim (/ h,,) = 0 if and only if {h,} is uniformly integrable over E.
E

Proof. If {h,} is uniformly integrable, then by the Vitali Convergence
Theorem, lim,_oo( [z hn) = [ (limp—oo hy) = [0 =0.

Conversely, suppose lim,_.oo( [ hn) = 0 and let € > 0. Then there is
N € N for which [ h, <& for n> N.
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Theorem 4.26

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence

of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

lim (/ h,,) = 0 if and only if {h,} is uniformly integrable over E.
E

n—oo

Proof. If {h,} is uniformly integrable, then by the Vitali Convergence
Theorem, lim,_oo( [z hn) = [ (limp—oo hy) = [0 =0.

Conversely, suppose lim,_.oo( [ hn) = 0 and let € > 0. Then there is
N € N for which fEh,,<5forn2 N. Since h, > 0on E, thenif AC E
is measurable and n > N then by monotonicity (Theorem 4.10),

/hng/hn<5forn2N. (30)
A E
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Theorem 4.26

Theorem 4.26 (continued)

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence

of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

n—oo

lim </ h,,> = 0 if and only if {h,} is uniformly integrable over E.
E

Proof (continued). By Proposition 4.24, since each hj, is integrable,
{h,,},’)’;ll is uniformly integrable over E.
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Theorem 4.26 (continued)

Theorem 4.26. Let E be of finite measure. Suppose {h,} is a sequence
of nonnegative integrable functions that converges pointwise a.e. on E to
h=0. Then

lim </ h,,> = 0 if and only if {h,} is uniformly integrable over E.
E

n—oo

Proof (continued). By Proposition 4.24, since each hj, is integrable,

{hn N:_11 is uniformly integrable over E. Let 6 > 0 correspond to £ > 0 for
this set in the definition of uniformly integrable. Then, trivially by (30),
this § > 0 also works for all h, with n > N. Therefore {h,}7°; is

uniformly integrable. O
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