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Lemma 4.22

Lemma 4.22

Lemma 4.22. Let E be a set of finite measure and δ > 0. Then E is the
disjoint union of a finite collection of sets, each of which has measure less
than δ.

Proof. By the Continuity of Measure (Theorem 2.15(ii)),

lim
n→∞

m(E \ [−n, n]) = lim
n→∞

m(E ∩ ((−∞,−n) ∪ (n,∞))) = m(∅) = 0,

since E ∩ ((−∞,−n) ∪ (n,∞)) is a descending collection of sets.

So by
the definition of limit, there exists n0 ∈ N for which m(E \ [−n0, n0]) < δ.
Now partition [−n0, n0] into subintervals of length less than δ, say
producing intervals I1, I2, . . . , IN . Then E is the disjoint union of
E \ [−n0, n0] = E ∩ ((−∞,−n) ∩ (n,∞)), E ∩ I1, E ∩ I2, . . . , E ∩ IN , and
each is of measure less than δ.
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Proposition 4.23

Proposition 4.23

Proposition 4.23. Let f be a measurable function on E . If f is integrable
over E , then for each ε > 0, there is δ > 0 for which:

if A ⊆ E is measurable and m(A) < δ then

∫
A
|f | < ε. (26)

Conversely, for m(E ) < ∞, if for each ε > 0, there is a δ > 0 for which
(26) holds, then f is integrable over E .

Proof. WLOG, we assume f ≥ 0 on E (otherwise, we use an ε/2
argument on the positive and negative parts of f ). Assume f is integrable
over E and let ε > 0.

Then, by the definition of the integral of a
nonnegative integrable function, there is a bounded function of finite
support (that is, nonzero on a set of finite measure), say fε, for which
0 ≤ fε ≤ f on E and 0 ≤

∫
E f −

∫
E fε < ε/2 (recall that

∫
E f is defined as

a supremum over such fε).
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Proposition 4.23

Proposition 4.23 (continued 1)

Proof (continued). If A ⊆ E is measurable then∫
A

f −
∫

A
fε =

∫
A
(f − fε) by linearity, Theorem 4.17

≤
∫

E
(f − fε) by additivity over A ∪· (E \ A) since f − fε ≥ 0

=

∫
E

f −
∫

E
fε by linearity

<
ε

2
by above.

Since fε is bounded, choose M > 0 for which 0 ≤ fε < M on E . So for
A ⊆ E measurable,∫

A
f <

(∫
A

fε

)
+

ε

2
by the above inequality

≤ Mm(A) +
ε

2
.
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Proposition 4.23

Proposition 4.23 (continued 2)

Proof (continued). Define δ = ε/(2M), and this inequality implies for
m(A) < δ = ε/(2M) that

∫
A f < M(ε/(2M)) + ε/2 = ε.

Conversely, suppose m(E ) < ∞ and suppose that for all ε > 0, there is a
δ > 0 for which (26) holds. For ε = 1, let δ0 > 0 be the corresponding δ.
Since m(E ) < ∞, by Lemma 4.22, we may express E as the disjoint union
of a finite collection of measurable subsets {Ek}N

k=1, each of measure less
than δ0.

Therefore (by additivity, Theorem 4.11, and since ε = 1),∫
E
|f | =

∫
∪· Ek

|f | =
N∑

k=1

(∫
Ek

|f |
)

<

N∑
k=1

(1) = N.

So f is integrable over E .
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Proposition 4.24

Proposition 4.24

Proposition 4.24. Let {fk}n
k=1 be a finite collection of functions, each of

which is integrable over E . Then {fk}n
k=1 is uniformly integrable.

Proof. Let ε > 0. Since each fk is integrable over E , by Proposition 4.23
we have for each 1 ≤ k ≤ n that there exists δk > 0 such that if A ⊆ E is
measurable and m(A) < δk then

∫
A |fk | < ε.

Let δ = min{δ1, δ2, . . . , δn}.
Then with A ⊆ E where m(A) < δ we have

∫
A |fk | < ε for each 1 ≤ k ≤ n

and so the family F = {fk}n
k=1 is uniformly integrable, as claimed.
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Proposition 4.25

Proposition 4.25

Proposition 4.25. Assume E has finite measure. Let the sequence of
functions {fk}∞k=1 be uniformly integrable over E . If {fn} → f pointwise
a.e. on E , then f is integrable over E .

Proof. First, by Proposition 3.9, f is measurable.

Let ε = 1 and let
δ0 > 0 be the corresponding δ > 0 given by the definition of uniform
integrability. Since E has finite measure, by Lemma 4.22, we may express
E as a disjoint union of a finite collection of measurable sets {Ek}N

k=1 such
that m(Ek) < δ0 for 1 ≤ k ≤ N. Then (by additivity, Theorem 4.11, and
since ε = 1)∫

E
|fn| =

∫
∪· Ek

|fn| =
N∑

k=1

(∫
Ek

|fn|
)

<

N∑
k=1

(1) = N.

So, by Fatou’s Lemma,
∫
E |f | ≤ lim inf

∫
E |fn| ≤ N. So |f | is integrable

over E and so (by definition) f is integrable over E .
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The Vitali Convergence Theorem

The Vitali Convergence Theorem

The Vitali Convergence Theorem.
Let E be of finite measure. Suppose sequence {fn} is uniformly integrable
over E . If {fn} → f pointwise a.e. on E , then f is integrable over E and

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim

n→∞
fn

)
=

∫
E

f .

Proof. By Proposition 4.25, f is integrable over E . So by Proposition
4.15, f is finite a.e. on E .

Also by Proposition 4.15, we can “excise” a
subset of E of measure 0 (on which the pointwise convergence does not
hold) and assume WLOG that f is real valued (as opposed to extended
real valued) and that the convergence is pointwise on all of E .
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 1)

Proof (continued). For measurable A ⊆ E and n ∈ N∣∣∣∣∫
E

fn −
∫

E
f

∣∣∣∣ =

∣∣∣∣∫
E
(fn − f )

∣∣∣∣ by linearity, Theorem 4.17

≤
∫

E
|fn − f | by Proposition 4.16,

the Integral Comparison Test

=

∫
E\A

|fn − f |+
∫

A
|fn − f | by additivity, Theorem 4.11

≤
∫

E\A
|fn − f |+

∫
A
(|fn|+ |f |) by the Triangle Inequality

and Monotonicity (Theorem 4.10)

=

∫
E\A

|fn − f |+
∫

A
|fn|+

∫
A
|f | by linearity. (29)
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 2)

Proof (continued). Let ε > 0. Since {fn} is uniformly integrable, there is
δ > 0 such that ∫

A
|fn| < ε/3 for all n ∈ N

and any measurable A ⊆ E with m(A) < δ. (∗)

By Fatou’s Lemma ∫
A
|f | ≤ lim inf

∫
A
|fn| ≤

ε

3
. (∗∗)

Since f is real-valued and E has finite measure, then by Egoroff’s Theorem,
there is E0 ⊆ E with m(E0) < δ and {fn} → f uniformly on E \ E0. So
there is N ∈ N such that |fn − f | < ε/(3m(E )) on E \ E0 for all n ≥ N.
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 3)

Proof (continued). With A = E0 in (29) we have for n ≥ N,∣∣∣∣∫
E

fn −
∫

E
f

∣∣∣∣ ≤
∫

E\E0

|fn − f |+
∫

E0

|fn|+
∫

E0

|f |

<

(
ε

3m(E )

)
m(E \ E0) +

ε

3
+

ε

3
by (∗) and (∗∗)

≤ ε.

So
∫
E fn →

∫
E f .
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∫

E\E0

|fn − f |+
∫

E0

|fn|+
∫

E0

|f |

<

(
ε

3m(E )

)
m(E \ E0) +

ε

3
+

ε

3
by (∗) and (∗∗)

≤ ε.

So
∫
E fn →

∫
E f .
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Theorem 4.26

Theorem 4.26

Theorem 4.26. Let E be of finite measure. Suppose {hn} is a sequence
of nonnegative integrable functions that converges pointwise a.e. on E to
h ≡ 0. Then

lim
n→∞

(∫
E

hn

)
= 0 if and only if {hn} is uniformly integrable over E .

Proof. If {hn} is uniformly integrable, then by the Vitali Convergence
Theorem, limn→∞(

∫
E hn) =

∫
E (limn→∞ hn) =

∫
E 0 = 0.

Conversely, suppose limn→∞(
∫
E hn) = 0 and let ε > 0. Then there is

N ∈ N for which
∫
E hn < ε for n ≥ N. Since hn ≥ 0 on E , then if A ⊆ E

is measurable and n ≥ N then by monotonicity (Theorem 4.10),∫
A

hn ≤
∫

E
hn < ε for n ≥ N. (30)
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Theorem 4.26

Theorem 4.26 (continued)

Theorem 4.26. Let E be of finite measure. Suppose {hn} is a sequence
of nonnegative integrable functions that converges pointwise a.e. on E to
h ≡ 0. Then

lim
n→∞

(∫
E

hn

)
= 0 if and only if {hn} is uniformly integrable over E .

Proof (continued). By Proposition 4.24, since each hn is integrable,
{hn}N−1

n=1 is uniformly integrable over E . Let δ > 0 correspond to ε > 0 for
this set in the definition of uniformly integrable. Then, trivially by (30),
this δ > 0 also works for all hn with n ≥ N. Therefore {hn}∞n=1 is
uniformly integrable.
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Theorem 4.26 (continued)
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