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Proposition 5.3

Proposition 5.3

Proposition 5.3. Assume E has finite measure. Let {fn} be a sequence of
measurable functions on E that converges pointwise a.e. on E to f , and f
is finite a.e. on E . Then {fn} → f in measure on E .

Proof. First, f is measurable since it is the a.e. pointwise limit of a
sequence of measurable functions (Proposition 3.9). Let η > 0. Let ε > 0.
By Egoroff’s Theorem, there is measurable F ⊆ E with m(E \ F ) < ε such
that {fn} → f uniformly on F .

So there exists N ∈ N such that for all
n ≥ N we have |fn − f | < η on F . So for n ≥ N,
{x ∈ E | |fn(x)− f (x)| > η} ⊆ E \ F and
m({x ∈ E | |fn(x)− f (x)| > η}) < ε since m(E \ F ) < ε. So
limn→∞m({x ∈ E | |fn(x)− f (x)| > η}) = 0 and {fn} → f in measure, by
definition.
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Theorem 5.4. Riesz

Theorem 5.4. (Riesz.)
If {fn} → f in measure on E , then there is a subsequence {fnk

} that
converges pointwise a.e. on E to f .

Proof. Let k ∈ N. Since {fn} → f in measure, for η = 1/k we have
limn→∞m({x ∈ E | |fn(x)− f (x)| > 1/k}) = 0 and for ε = 1/2k , there
exists nk ∈ N such that for all j ≥ nk ,
m({x ∈ E | |fj(x)− f (x)| > 1/k}) < 1/2k .

Define
Ek = {x ∈ E | |fnk

(x)− f (x)| > 1/k}. Then m(Ek) < 1/2k and so∑∞
k=1 m(Ek) < 1 < ∞. The Borel-Cantelli Lemma implies that almost all

x ∈ E lie in finitely many Ek . That is, for almost all x ∈ E , there is index
K (x) such that x 6∈ Ek if k ≥ K (x), or that |fnk

(x)− f (x)| ≤ 1/k for all
k ≥ K (x). So for such x (i.e., almost all x ∈ E ) we have
limk→∞ fnk

(x) = f (x); that is, the subsequence {fnk
} → f a.e. on E .
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Corollary 5.5

Corollary 5.5. Let {fn} be a sequence of nonnegative integrable functions

on E . Then lim
n→∞

∫
E

fn = 0 if and only if: {fn} → 0 in measure on E and

{fn} is uniformly integrable and tight over E .

Proof. Suppose lim
n→∞

∫
E

fn = 0. Then by Corollary 5.2 (which requires

that {fn(x)} → 0 for almost all x ∈ E , but this is required to show the
part of the result which implies limn→∞

∫
E fn = 0 and we are taking this as

our hypothesis here), we have that {fn} is uniformly integrable and tight
over E , as claimed.

To show that {fn} → 0 in measure on E , let η > 0.
By Chebychev’s Inequality, for each n ∈ N we have

m({x ∈ E | fn > η}) ≤ 1

η

∫
E

fn.

So 0 ≤ limn→∞m({x ∈ E | fn > η}) ≤ 1
η limn→∞

∫
E fn = 0 and, by

definition, {fn} → 0 in measure on E .
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Corollary 5.5

Corollary 5.5 (continued)

Proof (continued). To prove the converse, suppose {fn} → 0 in measure
on E and {fn} is uniformly integrable and tight over E . ASSUME

lim
n→∞

∫
E

fn 6= 0. Then there is some ε0 > 0 and a subsequence {fnk
} for

which ∫
E

fnk
≥ ε0 for all k ∈ N. (∗)

However, by Theorem 5.4 some subsequence {fnkj
} of {fnk

} converges to

f ≡ 0 pointwise a.e. on E and this subsequence of the original sequence
{fn} is uniformly integrable and tight. But then by the Generalized Vitali
Convergence Theorem limj→∞

∫
E fnkj

=
∫
E f = 0.

This is a

CONTRADICTION to (∗), so that the assumption lim
n→∞

∫
E

fn 6= 0 is false,

and hence lim
n→∞

∫
E

fn = 0, as claimed.
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