Chapter 5. Lebesgue Integration: Further Topics
5.3. Characterization of Riemann and Lebesgue Integrability—Proofs of Theorems
1 Lemma 5.6

2 Theorem 5.7
Lemma 5.6. Let \(\{\varphi_n\} \) and \(\{\psi_n\} \) be sequences of functions, each of which is integrable over \(E \), such that \(\{\varphi_n\} \) is increasing while \(\{\psi_n\} \) is decreasing on \(E \). Let the function \(f \) on \(E \) have the property \(\varphi_n \leq f \leq \psi_n \) on \(E \) for all \(n \). If \(\lim_{n \to \infty} \left(\int_E (\psi_n - \varphi_n) \right) = 0 \), then \(\{\varphi_n\} \to f \) pointwise a.e. on \(E \), \(\{\psi_n\} \to f \) pointwise a.e. on \(E \), \(f \) is integrable over \(E \),

\[
\lim_{n \to \infty} \left(\int_E \varphi_n \right) = \int_E f \quad \text{and} \quad \lim_{n \to \infty} \left(\int_E \psi_n \right) = \int_E f.
\]

Proof. For \(x \in E \), define \(\varphi^*(x) = \lim_{n \to \infty} \varphi_n(x) \) and \(\psi^*(x) = \lim_{n \to \infty} \psi_n(x) \).
Lemma 5.6. Let \(\{\varphi_n\} \) and \(\{\psi_n\} \) be sequences of functions, each of which is integrable over \(E \), such that \(\{\varphi_n\} \) is increasing while \(\{\psi_n\} \) is decreasing on \(E \). Let the function \(f \) on \(E \) have the property \(\varphi_n \leq f \leq \psi_n \) on \(E \) for all \(n \). If \(\lim_{n \to \infty} \left(\int_E (\psi_n - \varphi_n) \right) = 0 \), then \(\{\varphi_n\} \to f \) pointwise a.e. on \(E \), \(\{\psi_n\} \to f \) pointwise a.e. on \(E \), \(f \) is integrable over \(E \),

\[
\lim_{n \to \infty} \left(\int_E \varphi_n \right) = \int_E f \quad \text{and} \quad \lim_{n \to \infty} \left(\int_E \psi_n \right) = \int_E f.
\]

Proof. For \(x \in E \), define \(\varphi^*(x) = \lim_{n \to \infty} \varphi_n(x) \) and \(\psi^*(x) = \lim_{n \to \infty} \psi_n(x) \). The functions \(\varphi^* \) and \(\psi^* \) are well-defined since \(\{\varphi_n\} \) and \(\{\psi_n\} \) are monotone and monotone sequence of extended real numbers converge (to an extended real number). \(\varphi^* \) and \(\psi^* \) are measurable by Proposition 3.9.
Lemma 5.6. Let \{\varphi_n\} and \{\psi_n\} be sequences of functions, each of which is integrable over \(E\), such that \{\varphi_n\} is increasing while \{\psi_n\} is decreasing on \(E\). Let the function \(f\) on \(E\) have the property \(\varphi_n \leq f \leq \psi_n\) on \(E\) for all \(n\). If \(\lim_{n \to \infty} \left(\int_E (\psi_n - \varphi_n) \right) = 0\), then \{\varphi_n\} \to f\) pointwise a.e. on \(E\), \{\psi_n\} \to f\) pointwise a.e. on \(E\), \(f\) is integrable over \(E\),

\[
\lim_{n \to \infty} \left(\int_E \varphi_n \right) = \int_E f \quad \text{and} \quad \lim_{n \to \infty} \left(\int_E \psi_n \right) = \int_E f.
\]

Proof. For \(x \in E\), define \(\varphi^*(x) = \lim_{n \to \infty} \varphi_n(x)\) and \(\psi^*(x) = \lim_{n \to \infty} \psi_n(x)\). The functions \(\varphi^*\) and \(\psi^*\) are well-defined since \{\varphi_n\} and \{\psi_n\} are monotone and monotone sequence of extended real numbers converge (to an extended real number). \(\varphi^*\) and \(\psi^*\) are measurable by Proposition 3.9.
Lemma 5.6 (continued 1)

Proof (continued). By monotonicity and properties of limits,
\(\varphi_n \leq \varphi^* \leq f \leq \psi^* \leq \psi_n \) on \(E \) and for all \(n \). So \(0 \leq \psi^* - \varphi^* \leq \psi_n - \varphi_n \) for all \(n \) and by monotonicity of integrals \(0 \leq \int_E (\psi^* - \varphi^*) \leq \int_E (\psi_n - \varphi_n) \) for all \(n \), so \(0 \leq \int_E (\psi^* - \varphi^*) \leq \lim_{n \to \infty} (\int_E (\psi_n - \varphi_n)) = 0. \) Since \(\psi^* - \varphi^* \) is nonnegative and measurable and \(\int_E (\psi^* - \varphi^*) = 0 \), then Proposition 4.9 tells us that \(\psi^* = \varphi^* \) a.e. on \(E \). But \(\varphi^* \leq f \leq \psi^* \) on \(E \), so \(\{\varphi^*\} \to f \) and \(\{\psi_n\} \to f \) pointwise a.e. on \(E \). So \(f \) is measurable (because \(f = \varphi^* = \psi^* \) a.e. on \(E \) and \(\varphi^*, \psi^* \) are measurable).
Proof (continued). By monotonicity and properties of limits,
\(\varphi_n \leq \varphi^* \leq f \leq \psi^* \leq \psi_n \) on \(E \) and for all \(n \). So \(0 \leq \psi^* - \varphi^* \leq \psi_n - \varphi_n \) for all \(n \) and by monotonicity of integrals \(0 \leq \int_E (\psi^* - \varphi^*) \leq \int_E (\psi_n - \varphi_n) \) for all \(n \), so \(0 \leq \int_E (\psi^* - \varphi^*) \leq \lim_{n \to \infty} (\int_E (\psi_n - \varphi_n)) = 0 \). Since \(\psi^* - \varphi^* \) is nonnegative and measurable and \(\int_E (\psi^* - \varphi^*) = 0 \), then Proposition 4.9 tells us that \(\psi^* = \varphi^* \) a.e. on \(E \). But \(\varphi^* \leq f \leq \psi^* \) on \(E \), so \(\{ \varphi^* \} \to f \) and \(\{ \psi_n \} \to f \) pointwise a.e. on \(E \). So \(f \) is measurable (because \(f = \varphi^* = \psi^* \) a.e. on \(E \) and \(\varphi^*, \psi^* \) are measurable). Next, \(0 \leq f - \psi_1 \leq \psi_1 - \varphi_1 \) on \(E \) (\(\{ \psi_n \} \) is decreasing), and \(\psi_1 \) and \(\varphi_1 \) are integrable over \(E \), so by the Integral Comparison Test (Theorem 4.16), \(f \) is integrable over \(E \).
Lemma 5.6 (continued 1)

Proof (continued). By monotonicity and properties of limits,
\(\varphi_n \leq \varphi^* \leq f \leq \psi^* \leq \psi_n \) on \(E \) and for all \(n \). So \(0 \leq \psi^* - \varphi^* \leq \psi_n - \varphi_n \) for all \(n \) and by monotonicity of integrals \(0 \leq \int_E (\psi^* - \varphi^*) \leq \int_E (\psi_n - \varphi_n) \) for all \(n \), so \(0 \leq \int_E (\psi^* - \varphi^*) \leq \lim_{n \to \infty} (\int_E (\psi_n - \varphi_n)) = 0 \). Since \(\psi^* - \varphi^* \) is nonnegative and measurable and \(\int_E (\psi^* - \varphi^*) = 0 \), then Proposition 4.9 tells us that \(\psi^* = \varphi^* \) a.e. on \(E \). But \(\varphi^* \leq f \leq \psi^* \) on \(E \), so \(\{ \varphi^* \} \to f \) and \(\{ \psi_n \} \to f \) pointwise a.e. on \(E \). So \(f \) is measurable (because \(f = \varphi^* = \psi^* \) a.e. on \(E \) and \(\varphi^*, \psi^* \) are measurable). Next, \(0 \leq f - \varphi_1 \leq \psi_1 - \varphi_1 \) on \(E \) (\(\{ \psi_n \} \) is decreasing), and \(\psi_1 \) and \(\varphi_1 \) are integrable over \(E \), so by the Integral Comparison Test (Theorem 4.16), \(f \) is integrable over \(E \).
Lemma 5.6. Let \(\{\varphi_n\} \) and \(\{\psi_n\} \) be sequences of functions, each of which is integrable over \(E \), such that \(\{\varphi_n\} \) is increasing while \(\{\psi_n\} \) is decreasing on \(E \). Let the function \(f \) on \(E \) have the property \(\varphi_n \leq f \leq \psi_n \) on \(E \) for all \(n \). If \(\lim_{n \to \infty} \left(\int_E (\psi_n - \varphi_n) \right) = 0 \), then \(\{\varphi_n\} \to f \) pointwise a.e. on \(E \), \(\{\psi_n\} \to f \) pointwise a.e. on \(E \), \(f \) is integrable over \(E \),

\[
\lim_{n \to \infty} \left(\int_E \varphi_n \right) = \int_E f \quad \text{and} \quad \lim_{n \to \infty} \left(\int_E \psi_n \right) = \int_E f.
\]

Proof (continued). By the above inequalities and monotonicity,

\[
0 \leq \int_E \psi_n - \int_E f = \int_E (\psi_n - f) \leq \int (\psi_n - \varphi_n) \quad \text{also by linearity and the fact that} \ \{\varphi_n\} \ \text{is increasing}\)
\]

and

\[
0 \leq \int_E f - \int_E \varphi_n = \int_E (f - \varphi_n) \leq \int_E (\psi_n - \varphi_n) \quad \{\psi_n\} \ \text{is decreasing}\)
\]

therefore \(\lim_{n \to \infty} (\int_E \varphi_n) = \int_E f = \lim_{n \to \infty} (\int_E \psi_n) \) since (by the Lebesgue Dominated Convergence Theorem)

\[
\lim_{n \to \infty} \int_E (\psi_n - \varphi_n) = \int_E \lim_{n \to \infty} (\psi_n - \varphi_n) = 0.
\]
Theorem 5.7

Theorem 5.7. Let f be a bounded function on a set of finite measure E. Then f is Lebesgue integrable over E if and only if f is measurable.

Proof. If f is measurable, then f is Lebesgue integrable by Theorem 4.4.
Theorem 5.7

Theorem 5.7. Let f be a bounded function on a set of finite measure E. Then f is Lebesgue integrable over E if and only if f is measurable.

Proof. If f is measurable, then f is Lebesgue integrable by Theorem 4.4.

Suppose f is Lebesgue integrable over E (that is, the upper and lower Lebesgue integrals are equal).
Theorem 5.7

Theorem 5.7. Let \(f \) be a bounded function on a set of finite measure \(E \). Then \(f \) is Lebesgue integrable over \(E \) if and only if \(f \) is measurable.

Proof. If \(f \) is measurable, then \(f \) is Lebesgue integrable by Theorem 4.4.

Suppose \(f \) is Lebesgue integrable over \(E \) (that is, the upper and lower Lebesgue integrals are equal). Since

\[
\int_E f = \sup \left\{ \int_E \varphi \mid \varphi \text{ is simple, } \varphi \leq f \text{ on } E \right\},
\]

\[
\int_E f = \inf \left\{ \int_E \psi \mid \psi \text{ is simple, } \varphi \geq f \text{ on } E \right\},
\]

then by the definition of sup and inf, there are sequences of simple functions, \(\{\varphi_n\} \) and \(\{\psi_n\} \) such that \(\varphi_n \leq f \leq \psi_n \) on \(E \) for all \(n \), \(\int_E f = \lim(\int_E \varphi_n) \), and \(\int_E f = \lim(\int_E \psi_n) \).
Theorem 5.7. Let \(f \) be a bounded function on a set of finite measure \(E \). Then \(f \) is Lebesgue integrable over \(E \) if and only if \(f \) is measurable.

Proof. If \(f \) is measurable, then \(f \) is Lebesgue integrable by Theorem 4.4.

Suppose \(f \) is Lebesgue integrable over \(E \) (that is, the upper and lower Lebesgue integrals are equal). Since

\[
\int_E f = \sup \left\{ \int_E \varphi \mid \varphi \text{ is simple, } \varphi \leq f \text{ on } E \right\},
\]

\[
\int_E f = \inf \left\{ \int_E \psi \mid \psi \text{ is simple, } \varphi \geq f \text{ on } E \right\},
\]

then by the definition of sup and inf, there are sequences of simple functions, \(\{ \varphi_n \} \) and \(\{ \psi_n \} \) such that \(\varphi_n \leq f \leq \psi_n \) on \(E \) for all \(n \),

\[
\int_E f = \lim (\int_E \varphi_n), \text{ and } \int_E f = \lim (\int_E \psi_n).
\]
Theorem 5.7. Let f be a bounded function on a set of finite measure E. Then f is Lebesgue integrable over E if and only if f is measurable.

Proof (continued). So

$$0 = \int_E f - \int_E f = \lim \left(\int_E \psi_n \right) - \lim \left(\int_E \varphi_n \right)$$

$$= \lim \left(\int_E \psi_n - \int_E \varphi_n \right)$$

$$= \lim \int_E (\psi_n - \varphi_n) \text{ by linearity.}$$

Since the max and min of a pair of simple functions are again simple, using the monotonicity of integration and possibly replacing φ_n by $\max_{1 \leq i \leq n} \{\varphi_i\}$ and ψ_n by $\min_{1 \leq i \leq n} \{\psi_n\}$ (pointwise) we may suppose $\{\varphi_n\}$ is increasing and $\{\psi_n\}$ is decreasing.
Theorem 5.7 (continued)

Theorem 5.7. Let \(f \) be a bounded function on a set of finite measure \(E \). Then \(f \) is Lebesgue integrable over \(E \) if and only if \(f \) is measurable.

Proof (continued). So

\[
0 = \int_E f - \int_E f = \lim \left(\int_E \psi_n \right) - \lim \left(\int_E \varphi_n \right)
\]

\[
= \lim \left(\int_E \psi_n - \int_E \varphi_n \right)
\]

\[
= \lim \int_E (\psi_n - \varphi_n) \text{ by linearity.}
\]

Since the max and min of a pair of simple functions are again simple, using the monotonicity of integration and possibly replacing \(\varphi_n \) by \(\max_{1 \leq i \leq n} \{ \varphi_i \} \) and \(\psi_n \) by \(\min_{1 \leq i \leq n} \{ \psi_n \} \) (pointwise) we may suppose \(\{ \varphi_n \} \) is increasing and \(\{ \psi_n \} \) is decreasing. By Lemma 5.6, \(\{ \varphi_n \} \to f \) pointwise a.e. on \(E \) (so does \(\{ \psi_n \} \)). So \(f \) is measurable since it is the pointwise limit a.e. of a sequence of measurable functions (by Proposition 3.9). \(\square \)
Theorem 5.7 (continued)

Theorem 5.7. Let f be a bounded function on a set of finite measure E. Then f is Lebesgue integrable over E if and only if f is measurable.

Proof (continued). So

\[
0 = \int_E f - \int_E f = \lim \left(\int_E \psi_n \right) - \lim \left(\int_E \varphi_n \right)
\]

\[
= \lim \left(\int_E \psi_n - \int_E \varphi_n \right)
\]

\[
= \lim \int_E (\psi_n - \varphi_n) \text{ by linearity.}
\]

Since the max and min of a pair of simple functions are again simple, using the monotonicity of integration and possibly replacing φ_n by $\max_{1 \leq i \leq n}\{\varphi_i\}$ and ψ_n by $\min_{1 \leq i \leq n}\{\psi_n\}$ (pointwise) we may suppose $\{\varphi_n\}$ is increasing and $\{\psi_n\}$ is decreasing. By Lemma 5.6, $\{\varphi_n\} \to f$ pointwise a.e. on E (so does $\{\psi_n\}$). So f is measurable since it is the pointwise limit a.e. of a sequence of measurable functions (by Proposition 3.9). □