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6.1. Continuity and Monotone Functions—Proofs of Theorems
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Theorem 6.1

Theorem 6.1

Theorem 6.1. The f be a monotone function on the open interval (a, b).
Then f is continuous except possibly at a countable number of points in
(a, b).

Proof. WLOG, say f is monotone increasing.

Furthermore, assume (a, b)
is bounded (that is, a and b are finite) and f is increasing on the closed
interval [a, b]. Otherwise, express (a, b) as the union of an ascending
sequence of open, bounded intervals, the closures of which are contained
in (a, b) (which can be done if a and b are finite with a ±1/n approach, or
with a ±n approach if a and/or b is infinite). Then take the unions of the
discontinuities in each of this countable collection of intervals.

For each x0 ∈ (a, b), f has a finite limit from the left and from the right at
a0. Define f (x−0 ) = lim

x→x−0

f (x) = sup{f (x) | a < x < x0},

f (x+
0 ) = lim

x→x+
0

f (x) = inf{f (x) | x0 < x < b}.
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Theorem 6.1

Theorem 6.1 (continued)

Theorem 6.1. The f be a monotone function on the open interval (a, b).
Then f is continuous except possibly at a countable number of points in
(a, b).

Proof (continued). Since f is increasing, then f (x−0 ) ≤ f (x+
0 ). So f has

a discontinuity at x0 if and only if f (x−0 ) < f (x+
0 ), in which case there is a

jump discontinuity at x0. Define the “jump” interval
J(x0) = {y | f (x−0 ) < y < f (x+

0 )}. Each jump interval is contained in the
bounded interval [f (a), f (b)] and the collection of jump intervals is
(pairwise) disjoint.

Therefore, for each n ∈ N, there are only finitely many
jump intervals of length greater than 1/n. Thus the set of points of
discontinuity of f is the union of a countable collection of finite sets and
therefore is countable. (An alternative approach is to observe that we can
pick a rational number from each jump interval. Different discontinuities
are then associated with different rational numbers. Of course, a subset of
Q is countable.)
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Proposition 6.2

Proposition 6.2

Proposition 6.2. Let C be a countable subset of the open interval (a, b).
Then there is an increasing function on (a, b) that is continuous only at
the points in (a, b) \ C .
Proof. The proof is easy for finite C , so WLOG suppose C is countably
infinite. Let {qn}∞n=1 be an enumeration of C .

Define function f on (a, b)
as f (x) =

∑
{n|qn≤x} 1/2n (where z ∈ (a, b)). Notice that f (x) is part of a

geometric series which converges to 1, and so f (x) is well-defined. (If a
and b are finite, we could extend f to the endpoints as f (a) = 0 and
f (b) = 1; this is Exercise 6.1). Moreover, if a < u < v < b then

f (v)− f (u) =
∑

{n|u<qn<v}

1

2n
≥ 0. (1)

Thus f is increasing. Let x0 = qk ∈ C . Then by (1), f (x0)− f (x) ≥ 1/2k

for all x < x0 (since 1/2k is included in the sum for f (x0) but not included
in the sum for f (x) where x < x0). Therefore, f is not continuous at x0

since limx→x−0
f (x) ≤ f (x0)− 1/2k .
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Proposition 6.2

Proposition 6.2 (continued)

Proposition 6.2. Let C be a countable subset of the open interval (a, b).
Then there is an increasing function on (a, b) that is continuous only at
the points in (a, b) \ C .

Proof (continued). Now let x0 ∈ (a, b) \ C . Let n ∈ N.

There is an open
interval I containing x0 for which qn does not belong to I for 1 ≤ k ≤ n.
So from (1) we have for x ∈ I :

|f (x)− f (x0)| <
∞∑

k=n+1

=
1/2n+1

1− 1/2
=

1

2n
.

So for any ε > 0, choose n ∈ N such that 1/2n < ε. Then pick δ such that
I = (x0 − δ, x0 + δ) contains none of q1, q2, . . . , qn. Then for x ∈ I we
have |f (x)− f (x0)| < ε. So f is continuous at x0 ∈ (a, b) \ C .
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Proposition 6.2 (continued)
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