## **Real Analysis**

#### **Chapter 6. Differentiation and Integration** 6.1. Continuity and Monotone Functions—Proofs of Theorems



**Real Analysis** 

# Table of contents





**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof.** WLOG, say *f* is monotone increasing.

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof.** WLOG, say f is monotone increasing. Furthermore, assume (a, b) is bounded (that is, a and b are finite) and f is increasing on the closed interval [a, b]. Otherwise, express (a, b) as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in (a, b) (which can be done if a and b are finite with a  $\pm 1/n$  approach, or with a  $\pm n$  approach if a and/or b is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof.** WLOG, say f is monotone increasing. Furthermore, assume (a, b) is bounded (that is, a and b are finite) and f is increasing on the closed interval [a, b]. Otherwise, express (a, b) as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in (a, b) (which can be done if a and b are finite with a  $\pm 1/n$  approach, or with a  $\pm n$  approach if a and/or b is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

For each  $x_0 \in (a, b)$ , f has a finite limit from the left and from the right at  $a_0$ . Define  $f(x_0^-) = \lim_{x \to x_0^-} f(x) = \sup\{f(x) \mid a < x < x_0\},$ 

$$f(x_0^+) = \lim_{x \to x_0^+} f(x) = \inf\{f(x) \mid x_0 < x < b\}.$$

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof.** WLOG, say f is monotone increasing. Furthermore, assume (a, b) is bounded (that is, a and b are finite) and f is increasing on the closed interval [a, b]. Otherwise, express (a, b) as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in (a, b) (which can be done if a and b are finite with a  $\pm 1/n$  approach, or with a  $\pm n$  approach if a and/or b is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

For each  $x_0 \in (a, b)$ , f has a finite limit from the left and from the right at  $a_0$ . Define  $f(x_0^-) = \lim_{x \to x^-} f(x) = \sup\{f(x) \mid a < x < x_0\},$ 

$$f(x_0^+) = \lim_{x \to x_0^+} f(x) = \inf\{f(x) \mid x_0 < x < b\}.$$

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof (continued).** Since *f* is increasing, then  $f(x_0^-) \le f(x_0^+)$ . So *f* has a discontinuity at  $x_0$  if and only if  $f(x_0^-) < f(x_0^+)$ , in which case there is a jump discontinuity at  $x_0$ . Define the "jump" interval  $J(x_0) = \{y \mid f(x_0^-) < y < f(x_0^+)\}$ . Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection of jump intervals is (pairwise) disjoint.

**Real Analysis** 

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof (continued).** Since f is increasing, then  $f(x_0^-) \le f(x_0^+)$ . So f has a discontinuity at  $x_0$  if and only if  $f(x_0^-) < f(x_0^+)$ , in which case there is a jump discontinuity at  $x_0$ . Define the "jump" interval  $J(x_0) = \{y \mid f(x_0^-) < y < f(x_0^+)\}$ . Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection of jump intervals is (pairwise) disjoint. Therefore, for each  $n \in \mathbb{N}$ , there are only finitely many jump intervals of length greater than 1/n. Thus the set of points of discontinuity of f is the union of a countable collection of finite sets and therefore is countable.

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof (continued).** Since f is increasing, then  $f(x_0^-) \leq f(x_0^+)$ . So f has a discontinuity at  $x_0$  if and only if  $f(x_0^-) < f(x_0^+)$ , in which case there is a jump discontinuity at  $x_0$ . Define the "jump" interval  $J(x_0) = \{y \mid f(x_0) < y < f(x_0)\}$ . Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection of jump intervals is (pairwise) disjoint. Therefore, for each  $n \in \mathbb{N}$ , there are only finitely many jump intervals of length greater than 1/n. Thus the set of points of discontinuity of f is the union of a countable collection of finite sets and therefore is countable. (An alternative approach is to observe that we can pick a rational number from each jump interval. Different discontinuities are then associated with different rational numbers. Of course, a subset of

**Theorem 6.1.** The f be a monotone function on the open interval (a, b). Then f is continuous except possibly at a countable number of points in (a, b).

**Proof (continued).** Since f is increasing, then  $f(x_0^-) \leq f(x_0^+)$ . So f has a discontinuity at  $x_0$  if and only if  $f(x_0^-) < f(x_0^+)$ , in which case there is a jump discontinuity at  $x_0$ . Define the "jump" interval  $J(x_0) = \{y \mid f(x_0) < y < f(x_0)\}$ . Each jump interval is contained in the bounded interval [f(a), f(b)] and the collection of jump intervals is (pairwise) disjoint. Therefore, for each  $n \in \mathbb{N}$ , there are only finitely many jump intervals of length greater than 1/n. Thus the set of points of discontinuity of f is the union of a countable collection of finite sets and therefore is countable. (An alternative approach is to observe that we can pick a rational number from each jump interval. Different discontinuities are then associated with different rational numbers. Of course, a subset of  $\mathbb{Q}$  is countable.)

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*.

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*. Define function *f* on (a, b) as  $f(x) = \sum_{\{n|q_n \le x\}} 1/2^n$  (where  $z \in (a, b)$ ). Notice that f(x) is part of a geometric series which converges to 1, and so f(x) is well-defined. (If *a* and *b* are finite, we could extend *f* to the endpoints as f(a) = 0 and f(b) = 1; this is Exercise 6.1).

**Real Analysis** 

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*. Define function *f* on (a, b) as  $f(x) = \sum_{\{n \mid q_n \leq x\}} 1/2^n$  (where  $z \in (a, b)$ ). Notice that f(x) is part of a geometric series which converges to 1, and so f(x) is well-defined. (If *a* and *b* are finite, we could extend *f* to the endpoints as f(a) = 0 and f(b) = 1; this is Exercise 6.1). Moreover, if a < u < v < b then

$$f(v) - f(u) = \sum_{\{n \mid u < q_n < v\}} \frac{1}{2^n} \ge 0.$$
 (1)

Thus *f* is increasing.

**Proposition 6.2.** Let C be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*. Define function *f* on (a, b) as  $f(x) = \sum_{\{n \mid q_n \leq x\}} 1/2^n$  (where  $z \in (a, b)$ ). Notice that f(x) is part of a geometric series which converges to 1, and so f(x) is well-defined. (If *a* and *b* are finite, we could extend *f* to the endpoints as f(a) = 0 and f(b) = 1; this is Exercise 6.1). Moreover, if a < u < v < b then

$$f(v) - f(u) = \sum_{\{n \mid u < q_n < v\}} \frac{1}{2^n} \ge 0.$$
 (1)

Thus f is increasing. Let  $x_0 = q_k \in C$ . Then by (1),  $f(x_0) - f(x) \ge 1/2^k$  for all  $x < x_0$  (since  $1/2^k$  is included in the sum for  $f(x_0)$  but not included in the sum for f(x) where  $x < x_0$ ).

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*. Define function *f* on (a, b) as  $f(x) = \sum_{\{n \mid q_n \leq x\}} 1/2^n$  (where  $z \in (a, b)$ ). Notice that f(x) is part of a geometric series which converges to 1, and so f(x) is well-defined. (If *a* and *b* are finite, we could extend *f* to the endpoints as f(a) = 0 and f(b) = 1; this is Exercise 6.1). Moreover, if a < u < v < b then

$$f(v) - f(u) = \sum_{\{n \mid u < q_n < v\}} \frac{1}{2^n} \ge 0.$$
 (1)

Thus f is increasing. Let  $x_0 = q_k \in C$ . Then by (1),  $f(x_0) - f(x) \ge 1/2^k$  for all  $x < x_0$  (since  $1/2^k$  is included in the sum for  $f(x_0)$  but not included in the sum for f(x) where  $x < x_0$ ). Therefore, f is not continuous at  $x_0$  since  $\lim_{x \to x_0^-} f(x) \le f(x_0) - 1/2^k$ .

- C

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof.** The proof is easy for finite *C*, so WLOG suppose *C* is countably infinite. Let  $\{q_n\}_{n=1}^{\infty}$  be an enumeration of *C*. Define function *f* on (a, b) as  $f(x) = \sum_{\{n \mid q_n \leq x\}} 1/2^n$  (where  $z \in (a, b)$ ). Notice that f(x) is part of a geometric series which converges to 1, and so f(x) is well-defined. (If *a* and *b* are finite, we could extend *f* to the endpoints as f(a) = 0 and f(b) = 1; this is Exercise 6.1). Moreover, if a < u < v < b then

$$f(v) - f(u) = \sum_{\{n \mid u < q_n < v\}} \frac{1}{2^n} \ge 0.$$
 (1)

Thus f is increasing. Let  $x_0 = q_k \in C$ . Then by (1),  $f(x_0) - f(x) \ge 1/2^k$  for all  $x < x_0$  (since  $1/2^k$  is included in the sum for  $f(x_0)$  but not included in the sum for f(x) where  $x < x_0$ ). Therefore, f is not continuous at  $x_0$  since  $\lim_{x \to x_0^-} f(x) \le f(x_0) - 1/2^k$ .

**Proposition 6.2.** Let C be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof (continued).** Now let  $x_0 \in (a, b) \setminus C$ . Let  $n \in \mathbb{N}$ .

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof (continued).** Now let  $x_0 \in (a, b) \setminus C$ . Let  $n \in \mathbb{N}$ . There is an open interval *I* containing  $x_0$  for which  $q_n$  does not belong to *I* for  $1 \le k \le n$ . So from (1) we have for  $x \in I$ :

$$|f(x) - f(x_0)| < \sum_{k=n+1}^{\infty} = \frac{1/2^{n+1}}{1 - 1/2} = \frac{1}{2^n}.$$

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof (continued).** Now let  $x_0 \in (a, b) \setminus C$ . Let  $n \in \mathbb{N}$ . There is an open interval *I* containing  $x_0$  for which  $q_n$  does not belong to *I* for  $1 \le k \le n$ . So from (1) we have for  $x \in I$ :

$$|f(x) - f(x_0)| < \sum_{k=n+1}^{\infty} = \frac{1/2^{n+1}}{1-1/2} = \frac{1}{2^n}.$$

So for any  $\varepsilon > 0$ , choose  $n \in \mathbb{N}$  such that  $1/2^n < \varepsilon$ . Then pick  $\delta$  such that  $I = (x_0 - \delta, x_0 + \delta)$  contains none of  $q_1, q_2, \ldots, q_n$ . Then for  $x \in I$  we have  $|f(x) - f(x_0)| < \varepsilon$ .

**Proposition 6.2.** Let C be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof (continued).** Now let  $x_0 \in (a, b) \setminus C$ . Let  $n \in \mathbb{N}$ . There is an open interval *I* containing  $x_0$  for which  $q_n$  does not belong to *I* for  $1 \le k \le n$ . So from (1) we have for  $x \in I$ :

$$|f(x) - f(x_0)| < \sum_{k=n+1}^{\infty} = \frac{1/2^{n+1}}{1-1/2} = \frac{1}{2^n}.$$

So for any  $\varepsilon > 0$ , choose  $n \in \mathbb{N}$  such that  $1/2^n < \varepsilon$ . Then pick  $\delta$  such that  $I = (x_0 - \delta, x_0 + \delta)$  contains none of  $q_1, q_2, \ldots, q_n$ . Then for  $x \in I$  we have  $|f(x) - f(x_0)| < \varepsilon$ . So f is continuous at  $x_0 \in (a, b) \setminus C$ .

**Proposition 6.2.** Let *C* be a countable subset of the open interval (a, b). Then there is an increasing function on (a, b) that is continuous only at the points in  $(a, b) \setminus C$ .

**Proof (continued).** Now let  $x_0 \in (a, b) \setminus C$ . Let  $n \in \mathbb{N}$ . There is an open interval *I* containing  $x_0$  for which  $q_n$  does not belong to *I* for  $1 \le k \le n$ . So from (1) we have for  $x \in I$ :

$$|f(x) - f(x_0)| < \sum_{k=n+1}^{\infty} = \frac{1/2^{n+1}}{1-1/2} = \frac{1}{2^n}.$$

So for any  $\varepsilon > 0$ , choose  $n \in \mathbb{N}$  such that  $1/2^n < \varepsilon$ . Then pick  $\delta$  such that  $I = (x_0 - \delta, x_0 + \delta)$  contains none of  $q_1, q_2, \ldots, q_n$ . Then for  $x \in I$  we have  $|f(x) - f(x_0)| < \varepsilon$ . So f is continuous at  $x_0 \in (a, b) \setminus C$ .