## Real Analysis

## Chapter 6. Differentiation and Integration

6.1. Continuity and Monotone Functions-Proofs of Theorems

## REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick

## Table of contents

(1) Theorem 6.1
(2) Proposition 6.2

## Theorem 6.1

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof. WLOG, say $f$ is monotone increasing.

## Theorem 6.1

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof. WLOG, say $f$ is monotone increasing. Furthermore, assume $(a, b)$ is bounded (that is, $a$ and $b$ are finite) and $f$ is increasing on the closed interval $[a, b]$. Otherwise, express $(a, b)$ as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in $(a, b)$ (which can be done if $a$ and $b$ are finite with $a \pm 1 / n$ approach, or with a $\pm n$ approach if $a$ and/or $b$ is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

## Theorem 6.1

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof. WLOG, say $f$ is monotone increasing. Furthermore, assume $(a, b)$ is bounded (that is, $a$ and $b$ are finite) and $f$ is increasing on the closed interval $[a, b]$. Otherwise, express $(a, b)$ as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in $(a, b)$ (which can be done if $a$ and $b$ are finite with $a \pm 1 / n$ approach, or with a $\pm n$ approach if $a$ and/or $b$ is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

For each $x_{0} \in(a, b), f$ has a finite limit from the left and from the right at $a_{0}$. Define

$$
\begin{aligned}
& f\left(x_{0}^{-}\right)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\sup \left\{f(x) \mid a<x<x_{0}\right\}, \\
& f\left(x_{0}^{+}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)=\inf \left\{f(x) \mid x_{0}<x<b\right\} .
\end{aligned}
$$

## Theorem 6.1

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof. WLOG, say $f$ is monotone increasing. Furthermore, assume $(a, b)$ is bounded (that is, $a$ and $b$ are finite) and $f$ is increasing on the closed interval $[a, b]$. Otherwise, express $(a, b)$ as the union of an ascending sequence of open, bounded intervals, the closures of which are contained in $(a, b)$ (which can be done if $a$ and $b$ are finite with a $\pm 1 / n$ approach, or with a $\pm n$ approach if $a$ and/or $b$ is infinite). Then take the unions of the discontinuities in each of this countable collection of intervals.

For each $x_{0} \in(a, b), f$ has a finite limit from the left and from the right at $a_{0}$. Define

$$
\begin{aligned}
& f\left(x_{0}^{-}\right)=\lim _{x \rightarrow x_{0}^{-}} f(x)=\sup \left\{f(x) \mid a<x<x_{0}\right\} \\
& f\left(x_{0}^{+}\right)=\lim _{x \rightarrow x_{0}^{+}} f(x)=\inf \left\{f(x) \mid x_{0}<x<b\right\}
\end{aligned}
$$

## Theorem 6.1 (continued)

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof (continued). Since $f$ is increasing, then $f\left(x_{0}^{-}\right) \leq f\left(x_{0}^{+}\right)$. So $f$ has a discontinuity at $x_{0}$ if and only if $f\left(x_{0}^{-}\right)<f\left(x_{0}^{+}\right)$, in which case there is a jump discontinuity at $x_{0}$. Define the "jump" interval $J\left(x_{0}\right)=\left\{y \mid f\left(x_{0}^{-}\right)<y<f\left(x_{0}^{+}\right)\right\}$. Each jump interval is contained in the bounded interval $[f(a), f(b)]$ and the collection of jump intervals is (pairwise) disjoint.

## Theorem 6.1 (continued)

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in ( $a, b$ ).

Proof (continued). Since $f$ is increasing, then $f\left(x_{0}^{-}\right) \leq f\left(x_{0}^{+}\right)$. So $f$ has a discontinuity at $x_{0}$ if and only if $f\left(x_{0}^{-}\right)<f\left(x_{0}^{+}\right)$, in which case there is a jump discontinuity at $x_{0}$. Define the "jump" interval $J\left(x_{0}\right)=\left\{y \mid f\left(x_{0}^{-}\right)<y<f\left(x_{0}^{+}\right)\right\}$. Each jump interval is contained in the bounded interval $[f(a), f(b)]$ and the collection of jump intervals is (pairwise) disjoint. Therefore, for each $n \in \mathbb{N}$, there are only finitely many jump intervals of length greater than $1 / n$. Thus the set of points of discontinuity of $f$ is the union of a countable collection of finite sets and therefore is countable.

## Theorem 6.1 (continued)

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof (continued). Since $f$ is increasing, then $f\left(x_{0}^{-}\right) \leq f\left(x_{0}^{+}\right)$. So $f$ has a discontinuity at $x_{0}$ if and only if $f\left(x_{0}^{-}\right)<f\left(x_{0}^{+}\right)$, in which case there is a jump discontinuity at $x_{0}$. Define the "jump" interval $J\left(x_{0}\right)=\left\{y \mid f\left(x_{0}^{-}\right)<y<f\left(x_{0}^{+}\right)\right\}$. Each jump interval is contained in the bounded interval $[f(a), f(b)]$ and the collection of jump intervals is (pairwise) disjoint. Therefore, for each $n \in \mathbb{N}$, there are only finitely many jump intervals of length greater than $1 / n$. Thus the set of points of discontinuity of $f$ is the union of a countable collection of finite sets and therefore is countable. (An alternative approach is to observe that we can pick a rational number from each jump interval. Different discontinuities are then associated with different rational numbers. Of course, a subset of $\mathbb{Q}$ is countable.)

## Theorem 6.1 (continued)

Theorem 6.1. The $f$ be a monotone function on the open interval $(a, b)$. Then $f$ is continuous except possibly at a countable number of points in $(a, b)$.

Proof (continued). Since $f$ is increasing, then $f\left(x_{0}^{-}\right) \leq f\left(x_{0}^{+}\right)$. So $f$ has a discontinuity at $x_{0}$ if and only if $f\left(x_{0}^{-}\right)<f\left(x_{0}^{+}\right)$, in which case there is a jump discontinuity at $x_{0}$. Define the "jump" interval $J\left(x_{0}\right)=\left\{y \mid f\left(x_{0}^{-}\right)<y<f\left(x_{0}^{+}\right)\right\}$. Each jump interval is contained in the bounded interval $[f(a), f(b)]$ and the collection of jump intervals is (pairwise) disjoint. Therefore, for each $n \in \mathbb{N}$, there are only finitely many jump intervals of length greater than $1 / n$. Thus the set of points of discontinuity of $f$ is the union of a countable collection of finite sets and therefore is countable. (An alternative approach is to observe that we can pick a rational number from each jump interval. Different discontinuities are then associated with different rational numbers. Of course, a subset of $\mathbb{Q}$ is countable.)

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$.

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$. Define function $f$ on $(a, b)$ as $f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} 1 / 2^{n}($ where $z \in(a, b))$. Notice that $f(x)$ is part of a geometric series which converges to 1 , and so $f(x)$ is well-defined. (If a and $b$ are finite, we could extend $f$ to the endpoints as $f(a)=0$ and $f(b)=1$; this is Exercise 6.1).

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$. Define function $f$ on $(a, b)$ as $f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} 1 / 2^{n}$ (where $z \in(a, b)$ ). Notice that $f(x)$ is part of a geometric series which converges to 1 , and so $f(x)$ is well-defined. (If a and $b$ are finite, we could extend $f$ to the endpoints as $f(a)=0$ and $f(b)=1$; this is Exercise 6.1).


$$
\begin{equation*}
f(v)-f(u)= \tag{1}
\end{equation*}
$$



Thus $f$ is increasing.

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$. Define function $f$ on $(a, b)$ as $f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} 1 / 2^{n}$ (where $z \in(a, b)$ ). Notice that $f(x)$ is part of a geometric series which converges to 1 , and so $f(x)$ is well-defined. (If a and $b$ are finite, we could extend $f$ to the endpoints as $f(a)=0$ and $f(b)=1$; this is Exercise 6.1). Moreover, if $a<u<v<b$ then

$$
\begin{equation*}
f(v)-f(u)=\sum_{\left\{n \mid u<q_{n}<v\right\}} \frac{1}{2^{n}} \geq 0 \tag{1}
\end{equation*}
$$

Thus $f$ is increasing. Let $x_{0}=q_{k} \in C$. Then by (1), $f\left(x_{0}\right)-f(x) \geq 1 / 2^{k}$ for all $x<x_{0}$ (since $1 / 2^{k}$ is included in the sum for $f\left(x_{0}\right)$ but not included in the sum for $f(x)$ where $\left.x<x_{0}\right)$.

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$. Define function $f$ on $(a, b)$ as $f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} 1 / 2^{n}$ (where $z \in(a, b)$ ). Notice that $f(x)$ is part of a geometric series which converges to 1 , and so $f(x)$ is well-defined. (If a and $b$ are finite, we could extend $f$ to the endpoints as $f(a)=0$ and $f(b)=1$; this is Exercise 6.1). Moreover, if $a<u<v<b$ then

$$
\begin{equation*}
f(v)-f(u)=\sum_{\left\{n \mid u<q_{n}<v\right\}} \frac{1}{2^{n}} \geq 0 \tag{1}
\end{equation*}
$$

Thus $f$ is increasing. Let $x_{0}=q_{k} \in C$. Then by (1), $f\left(x_{0}\right)-f(x) \geq 1 / 2^{k}$ for all $x<x_{0}$ (since $1 / 2^{k}$ is included in the sum for $f\left(x_{0}\right)$ but not included in the sum for $f(x)$ where $\left.x<x_{0}\right)$. Therefore, $f$ is not continuous at $x_{0}$ since lim

## Proposition 6.2

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.
Proof. The proof is easy for finite $C$, so WLOG suppose $C$ is countably infinite. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $C$. Define function $f$ on $(a, b)$ as $f(x)=\sum_{\left\{n \mid q_{n} \leq x\right\}} 1 / 2^{n}$ (where $z \in(a, b)$ ). Notice that $f(x)$ is part of a geometric series which converges to 1 , and so $f(x)$ is well-defined. (If a and $b$ are finite, we could extend $f$ to the endpoints as $f(a)=0$ and $f(b)=1$; this is Exercise 6.1). Moreover, if $a<u<v<b$ then

$$
\begin{equation*}
f(v)-f(u)=\sum_{\left\{n \mid u<q_{n}<v\right\}} \frac{1}{2^{n}} \geq 0 . \tag{1}
\end{equation*}
$$

Thus $f$ is increasing. Let $x_{0}=q_{k} \in C$. Then by (1), $f\left(x_{0}\right)-f(x) \geq 1 / 2^{k}$ for all $x<x_{0}$ (since $1 / 2^{k}$ is included in the sum for $f\left(x_{0}\right)$ but not included in the sum for $f(x)$ where $\left.x<x_{0}\right)$. Therefore, $f$ is not continuous at $x_{0}$ since $\lim _{x \rightarrow x_{0}^{-}} f(x) \leq f\left(x_{0}\right)-1 / 2^{k}$.

## Proposition 6.2 (continued)

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.

Proof (continued). Now let $x_{0} \in(a, b) \backslash C$. Let $n \in \mathbb{N}$.

## Proposition 6.2 (continued)

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.

Proof (continued). Now let $x_{0} \in(a, b) \backslash C$. Let $n \in \mathbb{N}$. There is an open interval / containing $x_{0}$ for which $q_{n}$ does not belong to / for $1 \leq k \leq n$. So from (1) we have for $x \in I$ :

$$
\left|f(x)-f\left(x_{0}\right)\right|<\sum_{k=n+1}^{\infty}=\frac{1 / 2^{n+1}}{1-1 / 2}=\frac{1}{2^{n}} .
$$

## Proposition 6.2 (continued)

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.

Proof (continued). Now let $x_{0} \in(a, b) \backslash C$. Let $n \in \mathbb{N}$. There is an open interval / containing $x_{0}$ for which $q_{n}$ does not belong to $/$ for $1 \leq k \leq n$. So from (1) we have for $x \in I$ :

$$
\left|f(x)-f\left(x_{0}\right)\right|<\sum_{k=n+1}^{\infty}=\frac{1 / 2^{n+1}}{1-1 / 2}=\frac{1}{2^{n}}
$$

So for any $\varepsilon>0$, choose $n \in \mathbb{N}$ such that $1 / 2^{n}<\varepsilon$. Then pick $\delta$ such that $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ contains none of $q_{1}, q_{2}, \ldots, q_{n}$. Then for $x \in I$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.

## Proposition 6.2 (continued)

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.

Proof (continued). Now let $x_{0} \in(a, b) \backslash C$. Let $n \in \mathbb{N}$. There is an open interval $/$ containing $x_{0}$ for which $q_{n}$ does not belong to $l$ for $1 \leq k \leq n$. So from (1) we have for $x \in I$ :

$$
\left|f(x)-f\left(x_{0}\right)\right|<\sum_{k=n+1}^{\infty}=\frac{1 / 2^{n+1}}{1-1 / 2}=\frac{1}{2^{n}}
$$

So for any $\varepsilon>0$, choose $n \in \mathbb{N}$ such that $1 / 2^{n}<\varepsilon$. Then pick $\delta$ such that $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ contains none of $q_{1}, q_{2}, \ldots, q_{n}$. Then for $x \in I$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. So $f$ is continuous at $x_{0} \in(a, b) \backslash C$.

## Proposition 6.2 (continued)

Proposition 6.2. Let $C$ be a countable subset of the open interval $(a, b)$. Then there is an increasing function on $(a, b)$ that is continuous only at the points in $(a, b) \backslash C$.

Proof (continued). Now let $x_{0} \in(a, b) \backslash C$. Let $n \in \mathbb{N}$. There is an open interval $/$ containing $x_{0}$ for which $q_{n}$ does not belong to $l$ for $1 \leq k \leq n$. So from (1) we have for $x \in I$ :

$$
\left|f(x)-f\left(x_{0}\right)\right|<\sum_{k=n+1}^{\infty}=\frac{1 / 2^{n+1}}{1-1 / 2}=\frac{1}{2^{n}}
$$

So for any $\varepsilon>0$, choose $n \in \mathbb{N}$ such that $1 / 2^{n}<\varepsilon$. Then pick $\delta$ such that $I=\left(x_{0}-\delta, x_{0}+\delta\right)$ contains none of $q_{1}, q_{2}, \ldots, q_{n}$. Then for $x \in I$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. So $f$ is continuous at $x_{0} \in(a, b) \backslash C$.

