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The Vitali Covering Lemma

The Vitali Covering Lemma

The Vitali Covering Lemma.
Let E be a set of finite outer measure and F a collection of closed,
bounded intervals that covers E in the sense of Vitali. Then for each
ε > 0, there is a finite disjoint subcollection {Ik}n

k=1 of F for which

m∗

[
E \

n⋃
k=1

Ik

]
< ε. (2)

Proof. Since m∗(E ) < ∞, there is an open set O containing E for which
m(O) < ∞ (by the definition of outer measure). Because F is a Vitali
covering of E , then every x ∈ E is in some interval of length less than
ε > 0 (for arbitrary ε > 0). So WLOG we can suppose each interval in F is
contained in O. By the countable additivity of measure and monotonicity
of measure, if {Ik}∞k=1 ⊆ F is a collection of disjoint intervals in F the

∞∑
k=1

`(Ik) ≤ m(O) < ∞. (3)
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The Vitali Covering Lemma

The Vitali Covering Lemma (continued 1)

Proof (continued). For {Ik}∞k=1 ⊂ F , define
Fn = {I ∈ F | I ∩ (∪n

k=1Ik) = ∅}. So each element of Fn contains no
elements of ∪n

k=1Ik . For any x ∈ E \ (∪n
k=1Ik) (a set open with respect to

E ), there is an ε-neighborhood of x which does not intersect ∪n
k=1Ik .

Since F is a covering of E in the sense of Vitali, then there is I ∈ F a
subset of the ε-neighborhood of x which contains x . This I ∈ Fn since it
does not intersect ∪n

k=1Ik . We therefore have:

if {Ik}m
k=1 ⊆ F , then E \ (∪∞k=1Ik) ⊆ E \ (∪n

k=1Ik) ⊆ ∪i∈Fn I

where Fn = {I ∈ F | I ∩ (∪n
k=1Ik) = ∅} . (4)

If there is a finite disjoint subcollection of F that covers E , then
m∗(E \ ∪n

k=1Ik) = 0 and we are done.
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The Vitali Covering Lemma

The Vitali Covering Lemma (continued 2)

Proof (continued). Otherwise, we inductively choose a disjoint
subcollection {Ik}∞k=1 of F which has the following property:

E \ ∪n
k=1Ik ⊆ ∪∞k=n+15 ∗ Ik for all n ∈ N (5)

where, for a closed, bounded interval I , “5 ∗ I” denotes the closed interval
that has the same midpoint as I and 5 times its length.
Let I1 be any interval in F . Suppose n ∈ N and that the finite disjoint
subcollection {Ik}n

k=1 of F has been chosen. Since E \ (∪n
k=1Ik) 6= ∅

(since we’ve assumed there is no finite cover of E in this case), the
collection Fn defined in (4) is nonempty. Moreover, the supremum, sn, of
the lengths of the intervals in Fn is finite since m(O) < ∞ is an upper
bound for these lengths. Choose In+1 to be an interval in Fn for which
`(In+1) > sn/2. Notice that In+1 ∈ Fn implies {Ik}∞k=1 is a disjoint
collection. So {Ik}∞k=1 is a countable disjoint subcollection of F such that
for each n ∈ N,

`(In+1) > `(I )/2 if I ∈ Fn and I ∩ (∪n
k=1IK ) = ∅. (6)
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The Vitali Covering Lemma

The Vitali Covering Lemma (continued 3)

Proof (continued). We infer from (3) that {`(Ik)} → 0. Fix n ∈ N.

To verify the inclusion (5), let x ∈ E \ (∪n
k=1Ik). We infer from (4) that

there is I ∈ F which contains x and is disjoint from ∪n
k=1Ik (in fact,

I ∈ Fn). Now I must have nonempty intersection with some Ik (where
k > n), for otherwise I ∈ Fn for all n ∈ N and by (6), `(Ik) > `(i)/ for all
k ∈ N, contradicting the convergence of {`(Ik)} to 0. Let N be the first
natural number for which I ∩ IN 6= ∅. Then > n.

Since I ∩ (∪N−1
k=1 Ik) = ∅,

we infer from (6) that `(IN) > `(I )/2. Since x ∈ I and I ∩ IN 6= ∅, the
distance from x to the midpoint of IN is at most `(I ) + `(IN)/2:
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The Vitali Covering Lemma

The Vitali Covering Lemma (continued 4)

Proof (continued). Hence, since `(I ) < 2`(IN), the distance from x to
the midpoint of IN is less than (5/2)`(IN). This means that x belongs to
5 ∗ IN . Thus, since N ≥ n + 1 then x ∈ 5 ∗ IN ⊆ ∪∞k=N+15 ∗ Ik and we have
established (5).

Let ε > 0. We infer from (3) that there is n ∈ N for which∑∞
k=n+1 `(Ik) < ε/5. For this n, we have by (5) that

E \ (∪n
k=1Ik) ⊆ sup∞k=n+1 5 ∗ Ik and by monotonicity of outer measure

m∗ (E \ (∪n
k=1I )K )) ≤ m∗ (

∪∞k=n+15 ∗ Ik
)

≤
∞∑

k=n+1

5`(Ik) by subadditivity

= 4(ε/5) = ε.

This proves (2).
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Lemma 6.3

Lemma 6.3

Lemma 6.3. Let f be an increasing function on the closed, bounded
interval [a, b]. Then for each α > 0,

m∗{x ∈ (a, b) | D[f (x)] ≥ α} ≤ 1

α
[f (b)− f (a)] (7)

and

m∗{x ∈ (a, b) | D[f (x)] = ∞} = 0. (8)

Proof. Let α > 0. Define Eα = {x ∈ (a, b) | D[f (x)] ≥ α}. Choose
α′ ∈ (0, α). Let F be the collection of closed, bounded intervals [c , d ]
contained in (a, b) for which f (d)− f (c) ≥ α′(d − c). Since D[f (x)] ≥ α
then we have by definition, that for each x ∈ Eα there is δ > 0 such that
sup0<|t|≤δ(f (x + t)− f (x))/t ≥ α− α′ = ε (where we take
ε = α− α′ > 0), which implies f (x + δ)− f (x) ≥ δα (with t = δ) and
f (x)− f (x − δ) ≥ δα (with t = −δ).
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Lemma 6.3

Lemma 6.3 (continued 1)

Proof (continued). So with d = x + δ and c = x − δ (δ > 0) these
inequalities yield f (d)− f (x) ≥ α(d − x) and f (x)− f (c) ≥ α(x − c).
Adding we have f (d)− f (c) ≥ α(d − c). So [c , d ] ∈ F (where we choose
δ sufficiently small so that [c , d ] ⊂ (a, b). Now the above argument holds
for any δ′ < δ, δ′ > 0, and so interval [c , d ] containing x ∈ Eα can be
made arbitrarily small in length. So F is a covering of Eα in the sense of
Vitali.

The Vitali Covering Lemma tells us that there is a finite disjoint
subcollection {[ck , dk ]}n

k=1 of F for which m∗[Eα \ (∪n
k=1[ck , dk ]] < ε for

any given ε > 0. Since

Eα ⊆ (∪n
k=1[ck , dk ]) ∪

(
Eα \

(
n

sup
k=1

[ck , dk [

))
then by finite subadditivity

m∗(Eα) ≤
n∑

k=1

(dk − ck) + ε ≤ 1

α′

n∑
k=1

[f (dk)− f (ck)] + ε.

() Real Analysis December 23, 2023 9 / 18



Lemma 6.3

Lemma 6.3 (continued 1)
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Lemma 6.3

Lemma 6.3 (continued 2)

Proof (continued). However, the function f is increasing on [a, b] and
{[ck , dk ]}n

k=1 is a disjoint collection of subintervals of [a, b], so

n∑
k=1

[f (dk)− f (ck)] = (f (d1)− f (c1)) + (f (d2)− f (c2)) + · · ·

+(f (dn−1)− f (cc−1) + (f (dn)− f (cn))

= −f (c1) + (f (d1)− f (c2) + · · ·+ (f (dn−1)− f (cn)) + f (dn)

≤ −f (c1) + 0 + 0 + · · ·+ 0 + f (dn) (where we index

the ck , dk ’s in increasing order; because f is an increasing function)

≤ f (b)− f (a) since a < c1, dn < b and f is increasing.

Thus, for each ε > 0 and α′ ∈ (0, α) we have
m∗(Eα) ≤ (1/α′)[f (b)− f (a)] + ε, and so (7) holds.
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Lemma 6.3

Lemma 6.3 (continued 3)

Lemma 6.3. Let f be an increasing function on the closed, bounded
interval [a, b]. Then for each α > 0,

m∗{x ∈ (a, b) | D[f (x)] ≥ α} ≤ 1

α
[f (b)− f (a)] (7)

and

m∗{x ∈ (a, b) | D[f (x)] = ∞} = 0. (8)

Proof (continued). For all n ∈ N we have that
{x ∈ (a, b) | D[f (x)] = ∞} ⊆ En and therefore by monotonicity of m∗ and
(7) we have

m∗({x ∈ (a, b) | D[f (x)] = ∞}) ≤ m∗(En) ≤
1

n
[f (b)− f (a)],

and so m∗({x ∈ (a, b) | D[f (x)] = ∞}) = 0 and (8) holds.
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Lebesgue Theorem

Lebesgue Theorem

Lebesgue Theorem.
If the function f is monotone on the open interval (a, b), then it is
differentiable almost everywhere on (a, b).

Proof. Let f be increasing on (a, b). WLOG, we take f to be bounded
(otherwise we express (a, b) as the union of an ascending sequence of
open, bounded intervals on which f is increasing and bounded, show that
f is differentiable a.e. on each of these intervals, and then apply continuity
of Lebesgue measure (theorem 2.15) to the sequence of measure zero
subsets of the ascending sequence of intervals and again conclude that f is
a.e. differentiable). The set of points x ∈ (a, b) at which
D[f (x)] > D[f (x)] is the union of the sets
Eα,β = {x ∈ (a, b) | D[f (x)] > α > β > D[f (x)]} where α, β ∈ Q.
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Lebesgue Theorem

Lebesgue Theorem (continued 1)

Proof (continued). Fix α, β ∈ Q with α > β and set E = Eα,β. Let
ε > 0. Choose an open set O for which

E ⊆ O ⊆ (a, b) and m(O) < m∗(E ) + ε (10)

(which can be done by the infimum definition of outer measure). Let F be
the collection of closed, bounded intervals [c , d ] contained in O for which
f (d)− f (c) < β(d − c). Since D[f (x)] < β on E , then as explained in the
proof of Lemma 6.3, F is a Vitali covering of E . The Vitali Covering
Lemma tells us that there is a finite disjoint subcollection {[ck , dk ]}n

k=1 of
F for which m∗[E \ (∪n

k=1[ck , dk ])] < ε. By the choice of the intervals
[ck , dk ], we have

n∑
k=1

[f (dk)− f (ck)] < β

n∑
k=1

(dj − ck)

≤ βm(O) by monotonicity of m

≤ β[m∗(E ) + ε] by (10). (12)
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Lebesgue Theorem

Lebesgue Theorem (continued 2)

Proof (continued). For 1 ≤ k ≤ n, we have by Lemma 6.3 applied to the
restriction of f to [ck , dk ], that

m∗(E ∩ (ck , dk)) ≤ (1/α)[f (dk)− f (ck)] (12′)

since D[f (x)] > α on (ck , dk). Therefore, by (11) and subadditivity

m∗(E ) = m∗ [(E ∩ (∪n
k=1(ck , dk))) ∪ (E \ ∪n

k=1[ck , dk ])]

≤
n∑

k=1

m∗(E ∩ (ck , dk)) + ε

≤ 1

α

n∑
k=1

[f (dk)− f (ck)] + ε by (12′). (13)
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Lebesgue Theorem

Lebesgue Theorem (continued 3)

Lebesgue Theorem.
If the function f is monotone on the open interval (a, b), then it is
differentiable almost everywhere on (a, b).

Proof (continued). We infer from (12) and (13) that

m∗(E ) ≤ 1

α
[β(m∗(E ) + ε)] + ε =

β

α
m∗(E ) +

β

α
ε + ε

for all ε > 0. Therefore, since 0 ≤ m∗(E ),∞ and β/α < 1, then it must
be that m∗(E ) = 0. The general result now holds as described at the
beginning of the proof.
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Corollary 6.4

Corollary 6.4

Corollary 6.4. Let f be an increasing function on the closed, bounded
interval [a, b]. Then f ′ is integrable over [a, b] and∫ b

a
f ′ ≤ f (b)− f (a).

Proof. Since f is increasing on [a, b + 1] (after extending it) then f is
measurable by Problem 6.22 and therefore Diffh[f (x)] is measurable (it is
a linear combination of measurable functions). Lebesgue’s Theorem tells
us that f is differentiable a.e. on (a, b). Therefore {Diff1/n[f ]}∞n=1 is a
sequence of nonnegative measurable functions that converges pointwise
a.e. on [a, b] to f ′. By Fatou’s Lemma∫ b

a
f ′ ≤ lim infn→∞

(∫ b

a
Diff1/n[f ]

)
. (16)
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a
f ′ ≤ lim infn→∞

(∫ b

a
Diff1/n[f ]

)
. (16)
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Corollary 6.4

Corollary 6.4 (continued 1)

Corollary 6.4. Let f be an increasing function on the closed, bounded
interval [a, b]. Then f ′ is integrable over [a, b] and∫ b

a
f ′ ≤ f (b)− f (a).

Proof (continued). Notice that for a ≤ u < v ≤ b we have by a change
of variables that∫ v

u
Diffh[f ] =

∫ v

u

f (x + h)− f (x)

h
=

1

h

∫ v

u
(f (x + h)− f (x))

=
1

h

(∫ v

u+h
f (x) +

∫ v+h

v
f (x)−

∫ u+h

u
f (x)−

∫ v

u+h
f (x)

)
(notice that f is increasing on [a, b],

so f is integrable on [a, b] and linearity holds)

=
1

h

(∫ v+h

v
f (x)−

∫ u+h

u
f (x)

)
=

1

h
(Avhf (v)− Avhf (u)).
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Corollary 6.4

Corollary 6.4 (continued 2)

Proof (continued). So

Diff1/n[f ] =
1

1/n

∫ b+1/n

b
f (x)− 1

1/n

∫ a+1/n

a
f (x)

= f (b)− 1

1/n

∫ a+1/n

a
f (x) since f (x) ≡ f (b) on [b, b + 1/n]

≤ f (b)− f (a) since f is increasing on [a, b]

Thus
lim supn→∞

(∫ b

a
Diff1/n[f ]

)
≤ f (b)− f (a). (17)

Combining (16) and (17) gives∫ b

a
f ′ ≤ lim infn→∞

(∫ b

a
Diff1/n[f ]

)
≤ lim supn→∞

(∫ b

a
Diff1/n[f ]

)
≤ f (b)− f (a).
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