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Lemma 6.5

Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed,
bounded interval [a, b]. Then f has the following explicit expression as the
difference of two increasing functions on [a, b]:

f (x) = [f (x) + TV (f[a,x])]− TV (f[a,x]) for all x ∈ [a, b].

Proof. Notice that if c ∈ (a, b), P is a partition of [a, b], and P ′ is the
refinement of P obtained by adjoining c to P, then by the Triangle
Inequality,

V (f ,P) =
k∑

i=1

|f (xi )− f (xi−1)|

=
k∑

i=1,i 6=j

|f (xi )− fi−1|+ |f (xj)− f (xj−1)|
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Lemma 6.5

Lemma 6.5 (continued 1)

Proof (continued).

V (f ,P) =
k∑

i=1,i 6=j

|f (xi )− fi−1)|+ |f (xj)− f (c) + f (c)− f (xj−1)|

where xj−1 < c < xj

≤
k∑

i=1,i 6=j

|f (xi )− f (xi−1)|+ |f (c)− f (xj−1|+ |f (xj)− f (c)|

= V (f ,P ′)

Since TV (f ) is defined in terms of suprema over all partitions of [a, b] and
since any partition P refined by adding c yields V (f ,P) ≤ V (f ,P ′), then
TV (f ) can be computed by taking suprema over partitions containing
point c . Now a partition P of [a, b] that contains the point c induces, and
is induced by, partitions P1 and P2 of [a, c] and [c , b], respectively.
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Lemma 6.5

Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
V (f[a,b],P) = V (f[a,c],P1) + V (f[c,b],P2) (where V (f[a,c],P1) denotes the
variation of the restriction of f to [a, c] with respect to partition P1 of
[a, c]). Take the supremum among such partitions P1 and P2 to conclude
that TV (f[a,b]) = TV (f[a,c]) + TV (f[c,b]). Since this holds for any
c ∈ (a, b), we have for all a ≤ u < v ≤ b that
TV (f[a,v ]) = TV (f[a,u]) + TV (f[u,v ]) and since f is of bounded variation,

TV (f[a,v ]) = TV (f[a,u]) + TV (f[u,v ]) ≥ 0 for all a ≤ u < v ≤ b. (21)

So the function x 7→ TV (f[z,x]) is a real-valued increasing function (since
(21) shows that this function evaluated at v is greater than or equal to
this function evaluated at u).
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Lemma 6.5

Lemma 6.5 (continued 3)

Lemma 6.5. Let the function f be of bounded variation on the closed,
bounded interval [a, b]. Then f has the following explicit expression as the
difference of two increasing functions on [a, b]:

f (x) = [f (x) + TV (f[a,x])]− TV (f[a,x]) for all x ∈ [a, b].

Proof (continued). By considering the partition P = {u, v} of [u, v ] we
have

f (u)− f (v) ≤ |f (v)− f (u)| = V (f[u,v ],P) ≤ TV (f[u,v ])

= TV (f[a,v ])− TV (f[a,u]) by (21).

Thus f (v) + TV (f[a,v ]) ≥ f (u) + TV (f[a,u]) for all a ≤ u < v ≤ b. So the
function x 7→ f (x) + TV (f[a,x]) is an increasing function. So we can write
f (x) as f (x) = [f (x) + TV (f[a,x])]− [TV (f[a,x])] for x ∈ [a, b] where the
function sin square brackets are both increasing.
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Jordan’s Theorem

Jordan’s Theorem

Jordan’s Theorem.
A function f is of bounded variation on the closed, bounded interval [a, b]
if and only if it is the difference of two increasing functions on [a, b]. When
f is written as such a difference, it is called a Jordan decomposition of f .

Proof. Let f be of bounded variation on [a, b]. Lemma 6.5 shows that f
is the difference of two increasing functions. For the converse, let
f = g − h on [a, b] where g and h are increasing functions on [a, b].

For
any partition P = {x0, x1, . . . , xk} of [a, b],

V (f ,P) =
k∑

i=1

|f (xi )− f (xi−1)|

=
k∑

i=1

|g(xi )− h(xi )− g(xi−1) + h(xi−1)|
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Jordan’s Theorem

Jordan’s Theorem

Proof (continued).

V (f ,P) =
k∑

i=1

[(g(xi )− g(xi−1)) + (h(xi−1)− h(xi ))]

=
k∑

i=1

|g(xi )− g(xi−1|+
k∑

i=1

|h(xi − h(xi−1)|

=
k∑

i=1

(g(xi )− g(xi−1) +
k∑

i=1

(h(xi − h(xi−1))

since g and h are increasing

= (g(b)− g(a)) + (h(b)− h(a)).

So TV (f ) ≤ (g(b)− g(a)) + (h(b)− h(a)) and f is of bounded variation
on [a, b].
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Corollary 6.6

Corollary 6.6

Corollary 6.6. If the function f is of bounded variation on the closed,
bounded interval [a, b], then it is differentiable almost everywhere on the
open interval (a, b) and f ′ is integrable over [a, b].

Proof. By Jordan’s Theorem, f is the difference of two increasing
functions on [a, b]. By Lebesgue’s Theorem, each increasing function is
differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b).

By Corollary 6.4,
∫
[a,b] f

′ ≤ f (b)− f (a) and f ′ is integrable on [a, b].
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