Chapter 6. Differentiation and Integration
6.3. Functions of Bounded Variation: Jordan’s Theorem—Proofs of Theorems
Table of contents

1. Lemma 6.5
2. Jordan’s Theorem
3. Corollary 6.6
Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$f(x) = [f(x) + TV(f_{[a,x]})] - TV(f_{[a,x]}) \text{ for all } x \in [a, b].$$

Proof. Notice that if $c \in (a, b)$, P is a partition of $[a, b]$, and P' is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,
Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$f(x) = [f(x) + TV(f_{[a,x]}))] - TV(f_{[a,x]})$$

for all $x \in [a, b]$.

Proof. Notice that if $c \in (a, b)$, P is a partition of $[a, b]$, and P' is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,

$$V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$$

$$= \sum_{i=1}^{k} |f(x_i) - f_{i-1}| + |f(x_j) - f(x_{j-1})|$$
Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$f(x) = [f(x) + TV(f_{[a,x]}))] - TV(f_{[a,x]}))$$ for all $x \in [a, b]$.

Proof. Notice that if $c \in (a, b)$, P is a partition of $[a, b]$, and P' is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,

$$V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$$

$$= \sum_{i=1}^{k} |f(x_i) - f_{i-1}| + |f(x_j) - f(x_{j-1})|$$
Lemma 6.5 (continued 1)

Proof (continued).

\[V(f, P) = \sum_{i=1, i \neq j}^{k} |f(x_i) - f_{i-1}| + |f(x_j) - f(c) + f(c) - f(x_{j-1})| \]

where \(x_{j-1} < c < x_j \)

\[\leq \sum_{i=1, i \neq j}^{k} |f(x_i) - f(x_{i-1})| + |f(c) - f(x_{j-1})| + |f(x_j) - f(c)| \]

\[= V(f, P') \]

Since \(TV(f) \) is defined in terms of suprema over all partitions of \([a, b]\) and since any partition \(P \) refined by adding \(c \) yields \(V(f, P) \leq V(f, P') \), then \(TV(f) \) can be computed by taking suprema over partitions containing point \(c \). Now a partition \(P \) of \([a, b]\) that contains the point \(c \) induces, and is induced by, partitions \(P_1 \) and \(P_2 \) of \([a, c]\) and \([c, b]\), respectively.
Lemma 6.5 (continued 1)

Proof (continued).

\[V(f, P) = \sum_{i=1, i \neq j}^{k} |f(x_i) - f_{i-1}| + |f(x_j) - f(c) + f(c) - f(x_{j-1})| \]

where \(x_{j-1} < c < x_j \)

\[\leq \sum_{i=1, i \neq j}^{k} |f(x_i) - f(x_{i-1})| + |f(c) - f(x_{j-1})| + |f(x_j) - f(c)| \]

\[= V(f, P') \]

Since \(TV(f) \) is defined in terms of suprema over all partitions of \([a, b]\) and since any partition \(P \) refined by adding \(c \) yields \(V(f, P) \leq V(f, P') \), then \(TV(f) \) can be computed by taking suprema over partitions containing point \(c \). Now a partition \(P \) of \([a, b]\) that contains the point \(c \) induces, and is induced by, partitions \(P_1 \) and \(P_2 \) of \([a, c]\) and \([c, b]\), respectively.
Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
\[V(f_{[a,b]}, P) = V(f_{[a,c]}, P_1) + V(f_{[c,b]}, P_2) \]
(where \(V(f_{[a,c]}, P_1) \) denotes the variation of the restriction of \(f \) to \([a, c] \) with respect to partition \(P_1 \) of \([a, c] \)). Take the supremum among such partitions \(P_1 \) and \(P_2 \) to conclude that \(TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]}) \). Since this holds for any \(c \in (a, b) \), we have for all \(a \leq u < v \leq b \) that
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \]
and since \(f \) is of bounded variation,
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \geq 0 \text{ for all } a \leq u < v \leq b. \]
(21)
Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
\[V(f_{[a,b]}, P) = V(f_{[a,c]}, P_1) + V(f_{[c,b]}, P_2) \]
(where \(V(f_{[a,c]}, P_1) \) denotes the variation of the restriction of \(f \) to \([a, c]\) with respect to partition \(P_1 \) of \([a, c]\)). Take the supremum among such partitions \(P_1 \) and \(P_2 \) to conclude that
\[TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]}) \]
Since this holds for any \(c \in (a, b) \), we have for all \(a \leq u < v \leq b \) that
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \]
and since \(f \) is of bounded variation,
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \geq 0 \text{ for all } a \leq u < v \leq b. \] (21)

So the function \(x \mapsto TV(f_{[z,x]}) \) is a real-valued increasing function (since (21) shows that this function evaluated at \(v \) is greater than or equal to this function evaluated at \(u \)).
Proof (continued). For such partitions,
\[V(f_{[a,b]}, P) = V(f_{[a,c]}, P_1) + V(f_{[c,b]}, P_2) \] (where \(V(f_{[a,c]}, P_1) \) denotes the variation of the restriction of \(f \) to \([a, c]\) with respect to partition \(P_1 \) of \([a, c]\)). Take the supremum among such partitions \(P_1 \) and \(P_2 \) to conclude that \(TV(f_{[a,b]}) = TV(f_{[a,c]}) + TV(f_{[c,b]}) \). Since this holds for any \(c \in (a, b) \), we have for all \(a \leq u < v \leq b \) that
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \] and since \(f \) is of bounded variation,
\[TV(f_{[a,v]}) = TV(f_{[a,u]}) + TV(f_{[u,v]}) \geq 0 \] for all \(a \leq u < v \leq b \). (21)
So the function \(x \mapsto TV(f_{[z,x]}) \) is a real-valued increasing function (since (21) shows that this function evaluated at \(v \) is greater than or equal to this function evaluated at \(u \)).
Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$f(x) = [f(x) + TV(f_{[a,x]}))] - TV(f_{[a,x]})$$

for all $x \in [a, b]$.

Proof (continued). By considering the partition $P = \{u, v\}$ of $[u, v]$ we have

$$f(u) - f(v) \leq |f(v) - f(u)| = V(f_{[u,v]}, P) \leq TV(f_{[u,v]})$$

$$= TV(f_{[a,v]}) - TV(f_{[a,u]})$$

by (21).

Thus $f(v) + TV(f_{[a,v]}) \geq f(u) + TV(f_{[a,u]})$ for all $a \leq u < v \leq b$. So the function $x \mapsto f(x) + TV(f_{[a,x]})$ is an increasing function. So we can write $f(x)$ as $f(x) = [f(x) + TV(f_{[a,x]}))] - [TV(f_{[a,x]}))]$ for $x \in [a, b]$ where the function sin square brackets are both increasing.
Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$f(x) = [f(x) + TV(f_{[a,x]}))] - TV(f_{[a,x]})$$ for all $x \in [a, b]$.

Proof (continued). By considering the partition $P = \{u, v\}$ of $[u, v]$ we have

$$f(u) - f(v) \leq |f(v) - f(u)| = V(f_{[u,v]}, P) \leq TV(f_{[u,v]}) = TV(f_{[a,v]}) - TV(f_{[a,u]}) \text{ by (21)}.$$

Thus $f(v) + TV(f_{[a,v]}) \geq f(u) + TV(f_{[a,u]})$ for all $a \leq u < v \leq b$. So the function $x \mapsto f(x) + TV(f_{[a,x]})$ is an increasing function. So we can write $f(x)$ as $f(x) = [f(x) + TV(f_{[a,x]}))] - [TV(f_{[a,x]})]$ for $x \in [a, b]$ where the function sin square brackets are both increasing. \qed
Jordan’s Theorem

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Proof. Let f be of bounded variation on $[a, b]$. Lemma 6.5 shows that f is the difference of two increasing functions. For the converse, let $f = g - h$ on $[a, b]$ where g and h are increasing functions on $[a, b]$.
Jordan’s Theorem

A function \(f \) is of bounded variation on the closed, bounded interval \([a, b]\) if and only if it is the difference of two increasing functions on \([a, b]\). When \(f \) is written as such a difference, it is called a *Jordan decomposition* of \(f \).

Proof. Let \(f \) be of bounded variation on \([a, b]\). Lemma 6.5 shows that \(f \) is the difference of two increasing functions. For the converse, let \(f = g - h \) on \([a, b]\) where \(g \) and \(h \) are increasing functions on \([a, b]\). For any partition \(P = \{x_0, x_1, \ldots, x_k\} \) of \([a, b]\),

\[
V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|
\]

\[
= \sum_{i=1}^{k} |g(x_i) - h(x_i) - g(x_{i-1}) + h(x_{i-1})|
\]
Jordan’s Theorem

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Proof. Let f be of bounded variation on $[a, b]$. Lemma 6.5 shows that f is the difference of two increasing functions. For the converse, let $f = g - h$ on $[a, b]$ where g and h are increasing functions on $[a, b]$. For any partition $P = \{x_0, x_1, \ldots, x_k\}$ of $[a, b]$,

$$V(f, P) = \sum_{i=1}^{k} |f(x_i) - f(x_{i-1})|$$

$$= \sum_{i=1}^{k} |g(x_i) - h(x_i) - g(x_{i-1}) + h(x_{i-1})|$$
Proof (continued).

\[V(f, P) = \sum_{i=1}^{k} [(g(x_i) - g(x_{i-1})) + (h(x_{i-1}) - h(x_i))] \]

\[= \sum_{i=1}^{k} |g(x_i) - g(x_{i-1})| + \sum_{i=1}^{k} |h(x_i) - h(x_{i-1})| \]

\[= \sum_{i=1}^{k} (g(x_i) - g(x_{i-1})) + \sum_{i=1}^{k} (h(x_i) - h(x_{i-1})) \]

since \(g \) and \(h \) are increasing

\[= (g(b) - g(a)) + (h(b) - h(a)). \]

So \(TV(f) \leq (g(b) - g(a)) + (h(b) - h(a)) \) and \(f \) is of bounded variation on \([a, b]\).
Proof (continued).

\[V(f, P) = \sum_{i=1}^{k} [(g(x_i) - g(x_{i-1})) + (h(x_{i-1}) - h(x_i))] \]

\[= \sum_{i=1}^{k} |g(x_i) - g(x_{i-1})| + \sum_{i=1}^{k} |h(x_i) - h(x_{i-1})| \]

\[= \sum_{i=1}^{k} (g(x_i) - g(x_{i-1})) + \sum_{i=1}^{k} (h(x_i) - h(x_{i-1})) \]

since \(g \) and \(h \) are increasing

\[= (g(b) - g(a)) + (h(b) - h(a)). \]

So \(TV(f) \leq (g(b) - g(a)) + (h(b) - h(a)) \) and \(f \) is of bounded variation on \([a, b]\). \qed
Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over $[a, b]$.

Proof. By Jordan’s Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue’s Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b).

Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over $[a, b]$.

Proof. By Jordan’s Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue’s Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b). By Corollary 6.4, $\int_{[a,b]} f' \leq f(b) - f(a)$ and f' is integrable on $[a, b]$. \qed
Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over $[a, b]$.

Proof. By Jordan’s Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue’s Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b). By Corollary 6.4, $\int_{[a, b]} f' \leq f(b) - f(a)$ and f' is integrable on $[a, b]$. \qed