Real Analysis

Chapter 6. Differentiation and Integration

6.3. Functions of Bounded Variation: Jordan's Theorem—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma 6.5
(2) Jordan's Theorem
(3) Corollary 6.6

Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Proof. Notice that if $c \in(a, b), P$ is a partition of $[a, b]$, and P^{\prime} is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,

Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Proof. Notice that if $c \in(a, b), P$ is a partition of $[a, b]$, and P^{\prime} is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,

Lemma 6.5

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Proof. Notice that if $c \in(a, b), P$ is a partition of $[a, b]$, and P^{\prime} is the refinement of P obtained by adjoining c to P, then by the Triangle Inequality,

$$
\begin{aligned}
V(f, P) & =\sum_{i=1}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \\
& =\sum_{i=1, i \neq j}^{k}\left|f\left(x_{i}\right)-f_{i-1}\right|+\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|
\end{aligned}
$$

Lemma 6.5 (continued 1)

Proof (continued).

$$
\begin{aligned}
V(f, P) & \left.=\sum_{i=1, i \neq j}^{k} \mid f\left(x_{i}\right)-f_{i-1}\right)\left|+\left|f\left(x_{j}\right)-f(c)+f(c)-f\left(x_{j-1}\right)\right|\right. \\
& \quad \text { where } x_{j-1}<c<x_{j} \\
& \leq \sum_{i=1, i \neq j}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|+\mid f(c)-f\left(x _ { j - 1 } \left|+\left|f\left(x_{j}\right)-f(c)\right|\right.\right. \\
& =V\left(f, P^{\prime}\right)
\end{aligned}
$$

Since $T V(f)$ is defined in terms of suprema over all partitions of $[a, b]$ and since any partition P refined by adding c yields $V(f, P) \leq V\left(f, P^{\prime}\right)$, then $T V(f)$ can be computed by taking suprema over partitions containing point c. Now a partition P of $[a, b]$ that contains the point c induces, and is induced by, partitions P_{1} and P_{2} of $[a, c]$ and $[c, b]$, respectively.

Lemma 6.5 (continued 1)

Proof (continued).

$$
\begin{aligned}
V(f, P) & \left.=\sum_{i=1, i \neq j}^{k} \mid f\left(x_{i}\right)-f_{i-1}\right)\left|+\left|f\left(x_{j}\right)-f(c)+f(c)-f\left(x_{j-1}\right)\right|\right. \\
& \quad \text { where } x_{j-1}<c<x_{j} \\
& \leq \sum_{i=1, i \neq j}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|+\mid f(c)-f\left(x _ { j - 1 } \left|+\left|f\left(x_{j}\right)-f(c)\right|\right.\right. \\
& =V\left(f, P^{\prime}\right)
\end{aligned}
$$

Since $T V(f)$ is defined in terms of suprema over all partitions of $[a, b]$ and since any partition P refined by adding c yields $V(f, P) \leq V\left(f, P^{\prime}\right)$, then $T V(f)$ can be computed by taking suprema over partitions containing point c. Now a partition P of $[a, b]$ that contains the point c induces, and is induced by, partitions P_{1} and P_{2} of $[a, c]$ and $[c, b]$, respectively.

Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
$V\left(f_{[a, b]}, P\right)=V\left(f_{[a, c]}, P_{1}\right)+V\left(f_{[c, b]}, P_{2}\right)$ (where $V\left(f_{[a, c]}, P_{1}\right)$ denotes the variation of the restriction of f to $[a, c]$ with respect to partition P_{1} of $[a, c]$). Take the supremum among such partitions P_{1} and P_{2} to conclude that $T V\left(f_{[a, b]}\right)=T V\left(f_{[a, c]}\right)+T V\left(f_{[c, b]}\right)$. Since this holds for any $c \in(a, b)$, we have for all $a \leq u<v \leq b$ that
$T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right)$ and since f is of bounded variation,

$$
\begin{equation*}
T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right) \geq 0 \text { for all } a \leq u<v \leq b . \tag{21}
\end{equation*}
$$

Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
$V\left(f_{[a, b]}, P\right)=V\left(f_{[a, c]}, P_{1}\right)+V\left(f_{[c, b]}, P_{2}\right)$ (where $V\left(f_{[a, c]}, P_{1}\right)$ denotes the variation of the restriction of f to $[a, c]$ with respect to partition P_{1} of $[a, c]$). Take the supremum among such partitions P_{1} and P_{2} to conclude that $T V\left(f_{[a, b]}\right)=T V\left(f_{[a, c]}\right)+T V\left(f_{[c, b]}\right)$. Since this holds for any $c \in(a, b)$, we have for all $a \leq u<v \leq b$ that
$T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right)$ and since f is of bounded variation,

$$
\begin{equation*}
T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right) \geq 0 \text { for all } a \leq u<v \leq b \tag{21}
\end{equation*}
$$

So the function $x \mapsto T V\left(f_{[z, x]}\right)$ is a real-valued increasing function (since (21) shows that this function evaluated at v is greater than or equal to this function evaluated at u).

Lemma 6.5 (continued 2)

Proof (continued). For such partitions,
$V\left(f_{[a, b]}, P\right)=V\left(f_{[a, c]}, P_{1}\right)+V\left(f_{[c, b]}, P_{2}\right)$ (where $V\left(f_{[a, c]}, P_{1}\right)$ denotes the variation of the restriction of f to $[a, c]$ with respect to partition P_{1} of $[a, c]$). Take the supremum among such partitions P_{1} and P_{2} to conclude that $T V\left(f_{[a, b]}\right)=T V\left(f_{[a, c]}\right)+T V\left(f_{[c, b]}\right)$. Since this holds for any $c \in(a, b)$, we have for all $a \leq u<v \leq b$ that
$T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right)$ and since f is of bounded variation,

$$
\begin{equation*}
T V\left(f_{[a, v]}\right)=T V\left(f_{[a, u]}\right)+T V\left(f_{[u, v]}\right) \geq 0 \text { for all } a \leq u<v \leq b . \tag{21}
\end{equation*}
$$

So the function $x \mapsto T V\left(f_{[z, x]}\right)$ is a real-valued increasing function (since (21) shows that this function evaluated at v is greater than or equal to this function evaluated at u).

Lemma 6.5 (continued 3)

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Proof (continued). By considering the partition $P=\{u, v\}$ of $[u, v]$ we have

$$
\begin{aligned}
f(u)-f(v) & \leq|f(v)-f(u)|=V\left(f_{[u, v]}, P\right) \leq T V\left(f_{[u, v]}\right) \\
& =T V\left(f_{[a, v]}\right)-T V\left(f_{[a, u]}\right) \text { by }(21) .
\end{aligned}
$$

Thus $f(v)+T V\left(f_{[a, v]}\right) \geq f(u)+T V\left(f_{[a, u]}\right)$ for all $a \leq u<v \leq b$. So the function $x \mapsto f(x)+T V\left(f_{[a, x]}\right)$ is an increasing function. So we can write $f(x)$ as $f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-\left[T V\left(f_{[a, x]}\right)\right]$ for $x \in[a, b]$ where the function sin square brackets are both increasing.

Lemma 6.5 (continued 3)

Lemma 6.5. Let the function f be of bounded variation on the closed, bounded interval $[a, b]$. Then f has the following explicit expression as the difference of two increasing functions on $[a, b]$:

$$
f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-T V\left(f_{[a, x]}\right) \text { for all } x \in[a, b] .
$$

Proof (continued). By considering the partition $P=\{u, v\}$ of $[u, v]$ we have

$$
\begin{aligned}
f(u)-f(v) & \leq|f(v)-f(u)|=V\left(f_{[u, v]}, P\right) \leq T V\left(f_{[u, v]}\right) \\
& =T V\left(f_{[a, v]}\right)-T V\left(f_{[a, u]}\right) \text { by }(21) .
\end{aligned}
$$

Thus $f(v)+T V\left(f_{[a, v]}\right) \geq f(u)+T V\left(f_{[a, u]}\right)$ for all $a \leq u<v \leq b$. So the function $x \mapsto f(x)+T V\left(f_{[a, x]}\right)$ is an increasing function. So we can write $f(x)$ as $f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-\left[T V\left(f_{[a, x]}\right)\right]$ for $x \in[a, b]$ where the function sin square brackets are both increasing.

Jordan's Theorem

Jordan's Theorem.

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Proof. Let f be of bounded variation on $[a, b]$. Lemma 6.5 shows that f is the difference of two increasing functions. For the converse, let $f=g-h$ on $[a, b]$ where g and h are increasing functions on $[a, b]$.

Jordan's Theorem

Jordan's Theorem.

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Proof. Let f be of bounded variation on $[a, b]$. Lemma 6.5 shows that f is the difference of two increasing functions. For the converse, let $f=g-h$ on $[a, b]$ where g and h are increasing functions on $[a, b]$. For any partition $P=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ of $[a, b]$,

Jordan's Theorem

Jordan's Theorem.

A function f is of bounded variation on the closed, bounded interval $[a, b]$ if and only if it is the difference of two increasing functions on $[a, b]$. When f is written as such a difference, it is called a Jordan decomposition of f.

Proof. Let f be of bounded variation on $[a, b]$. Lemma 6.5 shows that f is the difference of two increasing functions. For the converse, let $f=g-h$ on $[a, b]$ where g and h are increasing functions on $[a, b]$. For any partition $P=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ of $[a, b]$,

$$
\begin{aligned}
V(f, P) & =\sum_{i=1}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \\
& =\sum_{i=1}^{k}\left|g\left(x_{i}\right)-h\left(x_{i}\right)-g\left(x_{i-1}\right)+h\left(x_{i-1}\right)\right|
\end{aligned}
$$

Jordan's Theorem

Proof (continued).

$$
\begin{aligned}
V(f, P) & =\sum_{i=1}^{k}\left[\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)+\left(h\left(x_{i-1}\right)-h\left(x_{i}\right)\right)\right] \\
& =\sum_{i=1}^{k} \mid g\left(x_{i}\right)-g\left(x _ { i - 1 } | + \sum _ { i = 1 } ^ { k } | h \left(x_{i}-h\left(x_{i-1}\right) \mid\right.\right. \\
& =\sum_{i=1}^{k}\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)+\sum_{i=1}^{k}\left(h\left(x_{i}-h\left(x_{i-1}\right)\right)\right.\right. \\
& \quad \text { since } g \text { and } h \text { are increasing } \\
& =(g(b)-g(a))+(h(b)-h(a)) .
\end{aligned}
$$

Jordan's Theorem

Proof (continued).

$$
\begin{aligned}
V(f, P) & =\sum_{i=1}^{k}\left[\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)+\left(h\left(x_{i-1}\right)-h\left(x_{i}\right)\right)\right] \\
& =\sum_{i=1}^{k} \mid g\left(x_{i}\right)-g\left(x _ { i - 1 } | + \sum _ { i = 1 } ^ { k } | h \left(x_{i}-h\left(x_{i-1}\right) \mid\right.\right. \\
& =\sum_{i=1}^{k}\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)+\sum_{i=1}^{k}\left(h\left(x_{i}-h\left(x_{i-1}\right)\right)\right.\right. \\
& =(g(b)-g(a))+(h(b)-h(a)) .
\end{aligned}
$$

So $T V(f) \leq(g(b)-g(a))+(h(b)-h(a))$ and f is of bounded variation on $[a, b]$.

Corollary 6.6

Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f^{\prime} is integrable over $[a, b]$.

Proof. By Jordan's Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue's Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b).

Corollary 6.6

Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f^{\prime} is integrable over $[a, b]$.

Proof. By Jordan's Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue's Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b). By Corollary 6.4, $\int_{[a, b]} f^{\prime} \leq f(b)-f(a)$ and f^{\prime} is integrable on $[a, b]$.

Corollary 6.6

Corollary 6.6. If the function f is of bounded variation on the closed, bounded interval $[a, b]$, then it is differentiable almost everywhere on the open interval (a, b) and f^{\prime} is integrable over $[a, b]$.

Proof. By Jordan's Theorem, f is the difference of two increasing functions on $[a, b]$. By Lebesgue's Theorem, each increasing function is differentiable a.e. on (a, b) and hence f itself is a.e. differentiable on (a, b). By Corollary $6.4, \int_{[a, b]} f^{\prime} \leq f(b)-f(a)$ and f^{\prime} is integrable on $[a, b]$.

