Real Analysis

Chapter 6. Differentiation and Integration 6.4. Absolutely Continuous Functions—Proofs of Theorems

Real Analysis

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval [a, b], then it is absolutely continuous on [a, b].

Proof. Let c > 0 be a Lipschitz constant for f on [a, b]. That is, $f(u) - f(v)| \le c|u - v|$ for all $u, v \in [a, b]$.

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval [a, b], then it is absolutely continuous on [a, b].

Proof. Let c > 0 be a Lipschitz constant for f on [a, b]. That is, $f(u) - f(v)| \le c|u - v|$ for all $u, v \in [a, b]$. Then with $\delta = \varepsilon/c$, the definition of absolute continuity is satisfied.

Real Analysis

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval [a, b], then it is absolutely continuous on [a, b].

Proof. Let c > 0 be a Lipschitz constant for f on [a, b]. That is, $f(u) - f(v)| \le c|u - v|$ for all $u, v \in [a, b]$. Then with $\delta = \varepsilon/c$, the definition of absolute continuity is satisfied.

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval [a, b]. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon = 1$ in the definition of absolute continuity of f. Let P be a partition of [a, b] into N closed intervals $\{[c_k, d_k]\}_{k=1}^N$, each of length less than δ . Since we chose $\varepsilon = 1$, we have $TV(f_{[c_k, d_k]}) \leq 1$ for $1 \leq k \leq n$.

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval [a, b]. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon = 1$ in the definition of absolute continuity of f. Let P be a partition of [a, b] into N closed intervals $\{[c_k, d_k]\}_{k=1}^N$, each of length less than δ . Since we chose $\varepsilon = 1$, we have $TV(f_{[c_k, d_k]}) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the proof of Lemma 6.5 then gives $TV(f) = \sum_{k=1}^N TV(f_{[c_k, d_k]}) \leq N$. Therefore, f is of bounded variation on [a, b].

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval [a, b]. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon = 1$ in the definition of absolute continuity of f. Let P be a partition of [a, b] into N closed intervals $\{[c_k, d_k]\}_{k=1}^N$, each of length less than δ . Since we chose $\varepsilon = 1$, we have $TV(f_{[c_k, d_k]}) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the proof of Lemma 6.5 then gives $TV(f) = \sum_{k=1}^N TV(f_{[c_k, d_k]}) \leq N$. Therefore, f is of bounded variation on [a, b].

Now for the "difference of increasing absolutely continuous functions" part. Since f is of bounded variation, by Lemma 6.5, $f(x) = [f(x) + TV(f_{[a,x]})] - [TV(f_{[a,x]})]$. So the claim follows if $TV(f_{[a,x]})$ is absolutely continuous.

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval [a, b]. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon = 1$ in the definition of absolute continuity of f. Let P be a partition of [a, b] into N closed intervals $\{[c_k, d_k]\}_{k=1}^N$, each of length less than δ . Since we chose $\varepsilon = 1$, we have $TV(f_{[c_k, d_k]}) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the proof of Lemma 6.5 then gives $TV(f) = \sum_{k=1}^N TV(f_{[c_k, d_k]}) \leq N$. Therefore, f is of bounded variation on [a, b].

Now for the "difference of increasing absolutely continuous functions" part. Since *f* is of bounded variation, by Lemma 6.5, $f(x) = [f(x) + TV(f_{[a,x]})] - [TV(f_{[a,x]})]$. So the claim follows if $TV(f_{[a,x]})$ is absolutely continuous.

Proof (continued). Let $\varepsilon > 0$. Choose δ to correspond to $\varepsilon/2$ in the definition of absolute continuity of f on[a, b]. Let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^n (d_k - c_k) < \delta$. For $1 \le k \le n$, let P_k be a partition of $[c_k, d_k]$. Then $\sum_{k=1}^n V(f_{[c_k, d_k]}, P_k) < \varepsilon/2$ because $V(f_{[c_k, d_k]}, P_k)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_k is $d_k - c_k$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon/2$.

Proof (continued). Let $\varepsilon > 0$. Choose δ to correspond to $\varepsilon/2$ in the definition of absolute continuity of f on [a, b]. Let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n} (d_k - c_k) < \delta$. For $1 \le k \le n$, let P_k be a partition of $[c_k, d_k]$. Then $\sum_{k=1}^{n} V(f_{[c_k,d_k]}, P_k) < \varepsilon/2$ because $V(f_{[c_k,d_k]}, P_k)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_k is $d_k - c_k$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon/2$. Letting P_k vary over all partitions of $[c_k, d_k]$ gives that $\sum_{k=1}^{n} TV(f_{[c_k,d_k]}) \le \varepsilon/2 < \varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for 1 < k < n, $TV(f_{[a,a_{1}]}) = TV(f_{[a,a_{1}]}) - TV(f_{[a,a_{1}]}).$

Proof (continued). Let $\varepsilon > 0$. Choose δ to correspond to $\varepsilon/2$ in the definition of absolute continuity of f on [a, b]. Let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n} (d_k - c_k) < \delta$. For $1 \le k \le n$, let P_k be a partition of $[c_k, d_k]$. Then $\sum_{k=1}^{n} V(f_{[c_k,d_k]}, P_k) < \varepsilon/2$ because $V(f_{[c_k,d_k]}, P_k)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_k is $d_k - c_k$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon/2$. Letting P_k vary over all partitions of $[c_k, d_k]$ gives that $\sum_{k=1}^{n} TV(f_{[c_k,d_k]}) \leq \varepsilon/2 < \varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for $1 \le k \le n$, $TV(f_{[a,d_k]}) = TV(f_{[a,d_k]}) - TV(f_{[a,c_k]})$. Hence, if $\sum_{i=1}^n (d_k - c_k) < \delta$ then $\sum_{k=1}^{n} |TV(f_{[a,d_k]}) - TV(f_{[a,c_k]})| = \sum_{k=1}^{n} TV(f_{[c_k,d_k]}) \leq \varepsilon/2 < \varepsilon$. So the total variation function $TV(f_{[a,x]})$ is absolutely continuous.

Proof (continued). Let $\varepsilon > 0$. Choose δ to correspond to $\varepsilon/2$ in the definition of absolute continuity of f on [a, b]. Let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n} (d_k - c_k) < \delta$. For $1 \le k \le n$, let P_k be a partition of $[c_k, d_k]$. Then $\sum_{k=1}^{n} V(f_{[c_k,d_k]}, P_k) < \varepsilon/2$ because $V(f_{[c_k,d_k]}, P_k)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_k is $d_k - c_k$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon/2$. Letting P_k vary over all partitions of $[c_k, d_k]$ gives that $\sum_{k=1}^{n} TV(f_{[c_k,d_k]}) \le \varepsilon/2 < \varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for $1 \le k \le n$, $TV(f_{[c_{\iota},d_{\iota}]}) = TV(f_{[a,d_{k}]}) - TV(f_{[a,c_{\iota}]})$. Hence, if $\sum_{i=1}^{n} (d_{k} - c_{k}) < \delta$ then $\sum_{k=1}^{n} |TV(f_{[a,d_k]}) - TV(f_{[a,c_k]})| = \sum_{k=1}^{n} TV(f_{[c_{\iota},d_{\iota}]}) \leq \varepsilon/2 < \varepsilon.$ So the total variation function $TV(f_{[a,x]})$ is absolutely continuous.

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof. First, assume $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\varepsilon > 0$.

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof. First, assume $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\varepsilon > 0$. Choose $\delta > 0$ for which (by the definition of uniform integrability) $\in_E |\text{Diff}_h[f]| \le \varepsilon/2$ if $m(E) \le \delta$ and $0 \le k \le 1$. To show absolute continuity, let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^n (d_k - c_k) \le \delta$.

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b].

Proof. First, assume $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\varepsilon > 0$. Choose $\delta > 0$ for which (by the definition of uniform integrability) $\in_E |\text{Diff}_h[f]| < \varepsilon/2$ if $m(E) < \delta$ and $0 < k \le 1$. To show absolute continuity, let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^n (d_k - c_k) < \delta$. For $0 < h \le 1$ and $1 \le k \le n$ we have by the change of variables formula (14) (also in the proof of Corollary 6.4), $Av_h[f(d_k)] - Av_h[f(c_k)] = \int_{c_k}^{d_k} \text{Diff}_h[f]| = \int_E |\text{Diff}_h[f]|$ (by additivity) where $E \cup_{k=1}^n (c_k, d_k)$ has measure less than δ .

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b].

Proof. First, assume $\{\text{Diff}_h[f]\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\varepsilon > 0$. Choose $\delta > 0$ for which (by the definition of uniform integrability) $\in_E |\text{Diff}_h[f]| < \varepsilon/2$ if $m(E) < \delta$ and $0 < k \le 1$. To show absolute continuity, let $\{(c_k, d_k)\}_{k=1}^n$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^n (d_k - c_k) < \delta$. For $0 < h \le 1$ and $1 \le k \le n$ we have by the change of variables formula (14) (also in the proof of Corollary 6.4), $\operatorname{Av}_h[f(d_k)] - \operatorname{Av}_h[f(c_k)] = \int_{c_k}^{d_k} \operatorname{Diff}_h[f]| = \int_E |\operatorname{Diff}_h[f]|$ (by additivity) where $E \cup_{k=1}^n (c_k, d_k)$ has measure less than δ .

Proof (continued). So by the choice of δ ,

$$\sum_{k=1}^{n} |\operatorname{Av}_{h}[f(d_{k})] = \operatorname{Av}_{h}[f(c_{k})]| = \int_{E} |\operatorname{Diff}_{h}[f]| < \varepsilon/2 \quad (*)$$

for all $0 < h \le 1$. Since f is continuous then $\lim_{h\to 0^+} \operatorname{Av}_h[f] = \lim_{h\to 0} \frac{1}{h} \int_x^{x+h} f = f(x)$ (as in Calculus 1), so taking a limit as $h \to 0^+$ in (*) we get $\sum_{k=1}^n |f(d_k) - f(c_k)| < \varepsilon/2 < \varepsilon$. Hence, fis absolutely continuous on [a, b].

Proof (continued). So by the choice of δ ,

$$\sum_{k=1}^{n} |\operatorname{Av}_{h}[f(d_{k})] = \operatorname{Av}_{h}[f(c_{k})]| = \int_{E} |\operatorname{Diff}_{h}[f]| < \varepsilon/2 \quad (*)$$

for all $0 < h \le 1$. Since f is continuous then $\lim_{h\to 0^+} \operatorname{Av}_h[f] = \lim_{h\to 0} \frac{1}{h} \int_x^{x+h} f = f(x)$ (as in Calculus 1), so taking a limit as $h \to 0^+$ in (*) we get $\sum_{k=1}^n |f(d_k) - f(c_k)| < \varepsilon/2 < \varepsilon$. Hence, fis absolutely continuous on [a, b].

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f = f_1 - f_2$.

Proof (continued). So by the choice of δ ,

$$\sum_{k=1}^{n} |\operatorname{Av}_{h}[f(d_{k})] = \operatorname{Av}_{h}[f(c_{k})]| = \int_{E} |\operatorname{Diff}_{h}[f]| < \varepsilon/2 \quad (*)$$

for all $0 < h \le 1$. Since f is continuous then $\lim_{h\to 0^+} \operatorname{Av}_h[f] = \lim_{h\to 0} \frac{1}{h} \int_x^{x+h} f = f(x)$ (as in Calculus 1), so taking a limit as $h \to 0^+$ in (*) we get $\sum_{k=1}^n |f(d_k) - f(c_k)| < \varepsilon/2 < \varepsilon$. Hence, fis absolutely continuous on [a, b].

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f = f_1 - f_2$. So we can assume WLOG that f is increasing (because $\text{Diff}_h[f] = \text{Diff}_h[f_1] - \text{Diff}_h[f_2]$ and if families $\{\text{Diff}_h[f_1]\}_{0 < h \le 1}$ and $\{\text{Diff}_h[f_2]\}_{0 < h \le 1}$ are uniformly integrable, then $\{\text{Diff}_h[f_1 - f_2]\}_{0 < h \le 1}$ is uniformly integrable [let $\varepsilon > 0$ and choose δ_1 and δ_2 for f_1 and f_2 to "correspond" to $\varepsilon/2$, then choose $\delta = \min\{\delta_1, \delta_2\}$]).

Proof (continued). So by the choice of δ ,

$$\sum_{k=1}^{n} |\operatorname{Av}_{h}[f(d_{k})] = \operatorname{Av}_{h}[f(c_{k})]| = \int_{E} |\operatorname{Diff}_{h}[f]| < \varepsilon/2 \quad (*)$$

for all $0 < h \le 1$. Since f is continuous then $\lim_{h\to 0^+} \operatorname{Av}_h[f] = \lim_{h\to 0} \frac{1}{h} \int_x^{x+h} f = f(x)$ (as in Calculus 1), so taking a limit as $h \to 0^+$ in (*) we get $\sum_{k=1}^n |f(d_k) - f(c_k)| < \varepsilon/2 < \varepsilon$. Hence, fis absolutely continuous on [a, b].

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f = f_1 - f_2$. So we can assume WLOG that f is increasing (because $\text{Diff}_h[f] = \text{Diff}_h[f_1] - \text{Diff}_h[f_2]$ and if families $\{\text{Diff}_h[f_1]\}_{0 < h \le 1}$ and $\{\text{Diff}_h[f_2]\}_{0 < h \le 1}$ are uniformly integrable, then $\{\text{Diff}_h[f_1 - f_2]\}_{0 < h \le 1}$ is uniformly integrable [let $\varepsilon > 0$ and choose δ_1 and δ_2 for f_1 and f_2 to "correspond" to $\varepsilon/2$, then choose $\delta = \min\{\delta_1, \delta_2\}$]).

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\text{Diff}_h[f] = (f(x+h) - f(x))/h \ge 0$. Let $\varepsilon > 0$. To show uniform integrability, we must find $\delta > 0$ such that for each measurable subset *E* of (a, b),

$$\int_{E} \operatorname{Diff}_{h}[f] < \varepsilon \text{ if } m(E) < \varepsilon \text{ and } 0 < h \le 1.$$
 (25)

By Theorem 2.11, measurable set *E* is contained in a G_{δ} set *G* for which $m(G \setminus E) = 0$.

Real Analysis

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\text{Diff}_h[f] = (f(x+h) - f(x))/h \ge 0$. Let $\varepsilon > 0$. To show uniform integrability, we must find $\delta > 0$ such that for each measurable subset *E* of (a, b),

$$\int_{E} \mathsf{Diff}_{h}[f] < \varepsilon \text{ if } m(E) < \varepsilon \text{ and } 0 < h \le 1.$$
 (25)

By Theorem 2.11, measurable set *E* is contained in a G_{δ} set *G* for which $m(G \setminus E) = 0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G = \bigcap_{k=1}^{\infty} \mathcal{O}_k$, so take the sequence of open sets as $O_n = \bigcap_{k=1}^m \mathcal{O}_k$). Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a *finite* disjoint collection of open intervals

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\text{Diff}_h[f] = (f(x+h) - f(x))/h \ge 0$. Let $\varepsilon > 0$. To show uniform integrability, we must find $\delta > 0$ such that for each measurable subset *E* of (a, b),

$$\int_{E} \operatorname{Diff}_{h}[f] < \varepsilon \text{ if } m(E) < \varepsilon \text{ and } 0 < h \leq 1.$$
 (25)

By Theorem 2.11, measurable set *E* is contained in a G_{δ} set *G* for which $m(G \setminus E) = 0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G = \bigcap_{k=1}^{\infty} \mathcal{O}_k$, so take the sequence of open sets as $O_n = \bigcap_{k=1}^m \mathcal{O}_k$). Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a *finite* disjoint collection of open intervals (if the open set is $\bigcup_{k=1}^{\infty} I_k$ where I_k are open intervals, then define $O_n = \bigcup_{k=1}^n I_k$ and the open set is $\lim_{n\to\infty} O_n$ and $\{O_n\}_{n=1}^{\infty}$ is an ascending sequence).

()

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\text{Diff}_h[f] = (f(x+h) - f(x))/h \ge 0$. Let $\varepsilon > 0$. To show uniform integrability, we must find $\delta > 0$ such that for each measurable subset *E* of (a, b),

$$\int_{E} \operatorname{Diff}_{h}[f] < \varepsilon \text{ if } m(E) < \varepsilon \text{ and } 0 < h \leq 1.$$
 (25)

By Theorem 2.11, measurable set E is contained in a G_{δ} set G for which $m(G \setminus E) = 0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G = \bigcap_{k=1}^{\infty} \mathcal{O}_k$, so take the sequence of open sets as $O_n = \bigcap_{k=1}^m \mathcal{O}_k$). Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a *finite* disjoint collection of open intervals (if the open set is $\bigcup_{k=1}^{\infty} I_k$ where I_k are open intervals, then define $O_n = \bigcup_{k=1}^n I_k$ and the open set is $\lim_{n\to\infty} O_n$ and $\{O_n\}_{n=1}^{\infty}$ is an ascending sequence).

Proof (continued). Below we will show that there is $\delta > 0$ such that for $\{(c_k, d_k)\}_{k=1}^n$ a finite disjoint collection of open subintervals of (a, b):

$$\int_E \mathsf{Diff}_h[f] < \varepsilon/2 \text{ if } m(E) < \delta \text{ where } E = \cup_{k=1}^n (c_k, d_k) \text{ and } 0 < h \le 1.$$
 (26)

If (26) is established, then for E an open set with $E = \bigcup_{k=1}^{\infty} (c_k, d_k)$ we have by continuity of the integral (Theorem 4.21) that is $m(E) < \delta$ and $0 < h \le 1$ then

$$\int_{E} \operatorname{Diff}_{h}[f] = \int_{\bigcup_{k=1}^{\infty}(c_{k},d_{k})} \operatorname{Diff}_{h}[f] = \lim_{n \to \infty} \left(\int_{\bigcup_{k=1}^{n}(c_{k},d_{k})} \operatorname{Diff}_{n}[f] \right) \leq \frac{\varepsilon}{2}.$$
 (26')

Proof (continued). Below we will show that there is $\delta > 0$ such that for $\{(c_k, d_k)\}_{k=1}^n$ a finite disjoint collection of open subintervals of (a, b):

$$\int_E \mathsf{Diff}_h[f] < \varepsilon/2 \text{ if } m(E) < \delta \text{ where } E = \cup_{k=1}^n (c_k, d_k) \text{ and } 0 < h \le 1.$$
 (26)

If (26) is established, then for E an open set with $E = \bigcup_{k=1}^{\infty} (c_k, d_k)$ we have by continuity of the integral (Theorem 4.21) that is $m(E) < \delta$ and $0 < h \le 1$ then

$$\int_{E} \operatorname{Diff}_{h}[f] = \int_{\bigcup_{k=1}^{\infty} (c_{k}, d_{k})} \operatorname{Diff}_{h}[f] = \lim_{n \to \infty} \left(\int_{\bigcup_{k=1}^{n} (c_{k}, d_{k})} \operatorname{Diff}_{n}[f] \right) \leq \frac{\varepsilon}{2}.$$
 (26')

Now with (26') established, if $G = \bigcap_{k=1}^{\infty} O_k$ is a G_{δ} set where $m(G \setminus E) = 0$, then...

Proof (continued). Below we will show that there is $\delta > 0$ such that for $\{(c_k, d_k)\}_{k=1}^n$ a finite disjoint collection of open subintervals of (a, b):

$$\int_E \mathsf{Diff}_h[f] < \varepsilon/2 \text{ if } m(E) < \delta \text{ where } E = \cup_{k=1}^n (c_k, d_k) \text{ and } 0 < h \le 1.$$
 (26)

If (26) is established, then for E an open set with $E = \bigcup_{k=1}^{\infty} (c_k, d_k)$ we have by continuity of the integral (Theorem 4.21) that is $m(E) < \delta$ and $0 < h \le 1$ then

$$\int_{E} \operatorname{Diff}_{h}[f] = \int_{\bigcup_{k=1}^{\infty}(c_{k},d_{k})} \operatorname{Diff}_{h}[f] = \lim_{n \to \infty} \left(\int_{\bigcup_{k=1}^{n}(c_{k},d_{k})} \operatorname{Diff}_{n}[f] \right) \leq \frac{\varepsilon}{2}.$$
 (26')

Now with (26') established, if $G = \bigcap_{k=1}^{\infty} O_k$ is a G_{δ} set where $m(G \setminus E) = 0$, then...

Proof (continued).

$$\begin{split} \int_{E} \mathrm{Diff}_{h}[f] &\leq \int_{G} \mathrm{Diff}_{h}[f] \text{ by the monotonicity of the integral} \\ & \text{since } \mathrm{Diff}_{h}[f] \geq 0 \\ &= \int_{\bigcap_{k=1}^{\infty} O_{k}} \mathrm{Diff}_{h}[f] \\ &= \lim_{n \to \infty} \left(\int_{\bigcap_{k=1}^{n} O_{k}} \mathrm{Diff}_{h}[f] \right) \text{ by Continuity of the Integral} \\ &\leq \frac{\varepsilon}{2} \text{ since } \bigcap_{k=1}^{n} O_{k} \text{ is open and } (26') \text{ applies.} \end{split}$$

So establishing (26) yields (25) and the desired result.

Proof (continued). Choose $\delta > 0$ so that the definition of absolute continuity of f on [a, b+1] is satisfied for $\varepsilon/2$ (where f is extended by setting f(x) = f(b) for $x \in (b, b+1]$ as on page 113). By the change of variables used to get (14) on page 113 (and established in the proof of Corollary 6.4)

$$\int_{u}^{v} \text{Diff}_{h}[f] = \text{Av}_{h}[f(v)] - \text{Av}[f(u)] = \frac{1}{h} \int_{u}^{v+h} f - \frac{1}{h} \int_{u}^{u+h} f$$
$$= \frac{1}{h} \int_{0}^{h} f(x+v) - \frac{1}{h} \int_{0}^{h} f(x+u)$$
$$= \frac{1}{h} \int_{0}^{h} (f(x+v) - f(x+u)) = \frac{1}{h} \int_{0}^{h} g(t) dt$$

for $0 \le t \le 1$ and $a \le u < v \le b$ and g(t) = f(v + t) - f(u + t) (notice that this is a Riemann integral since f is hypothesized to be continuous).

Proof (continued). Choose $\delta > 0$ so that the definition of absolute continuity of f on [a, b+1] is satisfied for $\varepsilon/2$ (where f is extended by setting f(x) = f(b) for $x \in (b, b+1]$ as on page 113). By the change of variables used to get (14) on page 113 (and established in the proof of Corollary 6.4)

$$\int_{u}^{v} \text{Diff}_{h}[f] = \text{Av}_{h}[f(v)] - \text{Av}[f(u)] = \frac{1}{h} \int_{u}^{v+h} f - \frac{1}{h} \int_{u}^{u+h} f$$
$$= \frac{1}{h} \int_{0}^{h} f(x+v) - \frac{1}{h} \int_{0}^{h} f(x+u)$$
$$= \frac{1}{h} \int_{0}^{h} (f(x+v) - f(x+u)) = \frac{1}{h} \int_{0}^{h} g(t) dt$$

for $0 \le t \le 1$ and $a \le u < v \le b$ and g(t) = f(v + t) - f(u + t) (notice that this is a Riemann integral since f is hypothesized to be continuous).

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof (continued). Therefore if $\{(c_k, d_k)\}_{k=1}^n$ is a disjoint collection of open subintervals of (a, b), then $\int_E \text{Diff}_h[f] = \frac{1}{h} \int_0^h g(t) dt$ where $E = \bigcup_{k=1}^n (c_k, d_k)$ and $g(t) = \sum_{k=1}^n [f(d_k + t) - f(c_k + t)]$ for all $0 \le t \le 1$. If $\sum_{k=1}^n (d_k - c_k) < \delta$, then for $0 \le t \le 1$, $\sum_{k=1}^n ((d_k + t) - (c_k + t)) < \delta$ and $g(t) = \sum_{k=1}^n (f(d_k + t) - f(c_k + t)) < \varepsilon/2$ by the choice of δ (to get the $\varepsilon/2$ in the definition of "f is absolutely continuous").

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof (continued). Therefore if $\{(c_k, d_k)\}_{k=1}^n$ is a disjoint collection of open subintervals of (a, b), then $\int_E \text{Diff}_h[f] = \frac{1}{h} \int_0^h g(t) dt$ where $E = \bigcup_{k=1}^n (c_k, d_k)$ and $g(t) = \sum_{k=1}^n [f(d_k + t) - f(c_k + t)]$ for all $0 \le t \le 1$. If $\sum_{k=1}^n (d_k - c_k) < \delta$, then for $0 \le t \le 1$, $\sum_{k=1}^n ((d_k + t) - (c_k + t)) < \delta$ and $g(t) = \sum_{k=1}^n (f(d_k + t) - f(c_k + t)) < \varepsilon/2$ by the choice of δ (to get the $\varepsilon/2$ in the definition of "f is absolutely continuous"). Then $\int_E \text{Diff}_h[f] = \frac{1}{h} \int_0^h g(t) dt < \frac{1}{h}h(\varepsilon/2) = \varepsilon/2$. So (26) is confirmed and $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable.

Theorem 6.9. Let the function f be continuous on the closed, bounded interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the family of divided difference functions $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable over [a, b].

Proof (continued). Therefore if $\{(c_k, d_k)\}_{k=1}^n$ is a disjoint collection of open subintervals of (a, b), then $\int_E \text{Diff}_h[f] = \frac{1}{h} \int_0^h g(t) dt$ where $E = \bigcup_{k=1}^n (c_k, d_k)$ and $g(t) = \sum_{k=1}^n [f(d_k + t) - f(c_k + t)]$ for all $0 \le t \le 1$. If $\sum_{k=1}^n (d_k - c_k) < \delta$, then for $0 \le t \le 1$, $\sum_{k=1}^n ((d_k + t) - (c_k + t)) < \delta$ and $g(t) = \sum_{k=1}^n (f(d_k + t) - f(c_k + t)) < \varepsilon/2$ by the choice of δ (to get the $\varepsilon/2$ in the definition of "f is absolutely continuous"). Then $\int_E \text{Diff}_h[f] = \frac{1}{h} \int_0^h g(t) dt < \frac{1}{h}h(\varepsilon/2) = \varepsilon/2$. So (26) is confirmed and $\{\text{Diff}_h[f]\}_{0 < h \le 1}$ is uniformly integrable.