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Proposition 6.7

Proposition 6.7

Proposition 6.7. If the function f is Lipschitz on a closed, bounded
interval [a, b], then it is absolutely continuous on [a, b].

Proof. Let c > 0 be a Lipschitz constant for f on [a, b]. That is,
f (u)− f (v)| ≤ c |u − v | for all u, v ∈ [a, b].

Then with δ = ε/c , the
definition of absolute continuity is satisfied.
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Theorem 6.8

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed,
bounded interval [a, b]. Then f is the difference of increasing absolutely
continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to ε = 1 in the definition
of absolute continuity of f . Let P be a partition of [a, b] into N closed
intervals {[ck , dk ]}N

k=1, each of length less than δ. Since we chose ε = 1,
we have TV (f[ck ,dk ]) ≤ 1 for 1 ≤ k ≤ n.

The additivity formula (19) in the

proof of Lemma 6.5 then gives TV (f ) =
∑N

k=1 TV (f[ck ,dk ]) ≤ N.
Therefore, f is of bounded variation on [a, b].

Now for the “difference of increasing absolutely continuous functions”
part. Since f is of bounded variation, by Lemma 6.5,
f (x) = [f (x) + TV (f[a,x])]− [TV (f[a,x])]. So the claim follows if TV (f[a,x])
is absolutely continuous.

() Real Analysis January 9, 2016 4 / 12



Theorem 6.8

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed,
bounded interval [a, b]. Then f is the difference of increasing absolutely
continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to ε = 1 in the definition
of absolute continuity of f . Let P be a partition of [a, b] into N closed
intervals {[ck , dk ]}N

k=1, each of length less than δ. Since we chose ε = 1,
we have TV (f[ck ,dk ]) ≤ 1 for 1 ≤ k ≤ n. The additivity formula (19) in the

proof of Lemma 6.5 then gives TV (f ) =
∑N

k=1 TV (f[ck ,dk ]) ≤ N.
Therefore, f is of bounded variation on [a, b].

Now for the “difference of increasing absolutely continuous functions”
part. Since f is of bounded variation, by Lemma 6.5,
f (x) = [f (x) + TV (f[a,x])]− [TV (f[a,x])]. So the claim follows if TV (f[a,x])
is absolutely continuous.

() Real Analysis January 9, 2016 4 / 12



Theorem 6.8

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed,
bounded interval [a, b]. Then f is the difference of increasing absolutely
continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to ε = 1 in the definition
of absolute continuity of f . Let P be a partition of [a, b] into N closed
intervals {[ck , dk ]}N

k=1, each of length less than δ. Since we chose ε = 1,
we have TV (f[ck ,dk ]) ≤ 1 for 1 ≤ k ≤ n. The additivity formula (19) in the

proof of Lemma 6.5 then gives TV (f ) =
∑N

k=1 TV (f[ck ,dk ]) ≤ N.
Therefore, f is of bounded variation on [a, b].

Now for the “difference of increasing absolutely continuous functions”
part. Since f is of bounded variation, by Lemma 6.5,
f (x) = [f (x) + TV (f[a,x])]− [TV (f[a,x])]. So the claim follows if TV (f[a,x])
is absolutely continuous.

() Real Analysis January 9, 2016 4 / 12



Theorem 6.8

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed,
bounded interval [a, b]. Then f is the difference of increasing absolutely
continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to ε = 1 in the definition
of absolute continuity of f . Let P be a partition of [a, b] into N closed
intervals {[ck , dk ]}N

k=1, each of length less than δ. Since we chose ε = 1,
we have TV (f[ck ,dk ]) ≤ 1 for 1 ≤ k ≤ n. The additivity formula (19) in the

proof of Lemma 6.5 then gives TV (f ) =
∑N

k=1 TV (f[ck ,dk ]) ≤ N.
Therefore, f is of bounded variation on [a, b].

Now for the “difference of increasing absolutely continuous functions”
part. Since f is of bounded variation, by Lemma 6.5,
f (x) = [f (x) + TV (f[a,x])]− [TV (f[a,x])]. So the claim follows if TV (f[a,x])
is absolutely continuous.

() Real Analysis January 9, 2016 4 / 12



Theorem 6.8

Theorem 6.8 (continued)

Proof (continued). Let ε > 0. Choose δ to correspond to ε/2 in the
definition of absolute continuity of f on[a, b]. Let {(ck , dk)}n

k=1 be a
disjoint collection of open subintervals of (a, b) for which∑n

k=1(dk − ck) < δ. For 1 ≤ k ≤ n, let Pk be a partition of [ck , dk ]. Then∑n
k=1 V (f[ck ,dk ],Pk) < ε/2 because V (f[ck ,dk ],Pk) involves a portion of the

differences in function values in the definition of absolute continuity and
the sum of the differences of the x values in Pk is dk − ck , so the the
choice of δ we have this sum of differences of function values less than
ε/2.

Letting Pk vary over all partitions of [ck , dk ] gives that∑n
k=1 TV (f[ck ,dk ]) ≤ ε/2 < ε. We infer from (21) in the proof of Lemma

6.5 (see page 117) that for 1 ≤ k ≤ n,
TV (f[ck ,dk ]) = TV (f[a,dk ])− TV (f[a,ck ]). Hence, if

∑n
i=1(dk − ck) < δ then∑n

k=1 |TV (f[a,dk ])− TV (f[a,ck ])| =
∑n

k=1 TV (f[ck ,dk ]) ≤ ε/2 < ε. So the
total variation function TV (f[a,x]) is absolutely continuous.
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Theorem 6.9

Theorem 6.9

Theorem 6.9. Let the function f be continuous on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the
family of divided difference functions {Diffh[f ]}0<h≤1 is uniformly
integrable over [a, b].

Proof. First, assume {Diffh[f ]}0<h≤1 is uniformly integrable over [a, b].
Let ε > 0.

Choose δ > 0 for which (by the definition of uniform
integrability) ∈E |Diffh[f ]| < ε/2 if m(E ) < δ and 0 < k ≤ 1. To show
absolute continuity, let {(ck , dk)}n

k=1 be a disjoint collection of open
subintervals of (a, b) for which

∑n
k=1(dk − ck) < δ. For 0 < h ≤ 1 and

1 ≤ k ≤ n we have by the change of variables formula (14) (also in the

proof of Corollary 6.4), Avh[f (dk)]− Avh[f (ck)] =
∫ dk

ck
Diffh[f ]. Therefore∑n

k=1 |Avh[f (dk)]− Avh[f (ck)]| ≤
∑n

k=1

∫ dk

ck
|Diffh[f ]| =

∫
E |Diffh[f ]| (by

additivity) where E ∪n
k=1 (ck , dk) has measure less than δ.
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Theorem 6.9

Theorem 6.9 (continued 1)

Proof (continued). So by the choice of δ,

n∑
k=1

|Avh[f (dk)] = Avh[f (ck)]| =
∫

E
|Diffh[f ]| < ε/2 (∗)

for all 0 < h ≤ 1. Since f is continuous then
limh→0+ Avh[f ] = limh→0

1
h

∫ x+h
x f = f (x) (as in Calculus 1), so taking a

limit as h → 0+ in (∗) we get
∑n

k=1 |f (dk)− f (ck)| < ε/2 < ε. Hence, f
is absolutely continuous on [a, b].

Now suppose f is absolutely continuous. By Theorem 6.8, f is the
difference of two increasing absolutely continuous functions, say
f = f1 − f2. So we can assume WLOG that f is increasing (because
Diffh[f ] = Diffh[f1]− Diffh[f2] and if families {Diffh[f1]}0<h≤1 and
{Diffh[f2]}0<h≤1 are uniformly integrable, then {Diffh[f1 − f2]}0<h≤1 is
uniformly integrable [let ε > 0 and choose δ1 and δ2 for f1 and f2 to
“correspond” to ε/2, then choose δ = min{δ1, δ2}]).
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Theorem 6.9

Theorem 6.9 (continued 2)

Proof (continued). Therefore the divided differences (WLOG) are
nonnegative: Diffh[f ] = (f (x + h)− f (x))/h ≥ 0. Let ε > 0. To show
uniform integrability, we must find δ > 0 such that for each measurable
subset E of (a, b),∫

E
Diffh[f ] < ε if m(E ) < ε and 0 < h ≤ 1. (25)

By Theorem 2.11, measurable set E is contained in a Gδ set G for which
m(G \ E ) = 0.

But every Gδ set is the intersection of a descending
sequence of open sets (G = ∩∞k=1Ok , so take the sequence of open sets as
On = ∩m

k=1Ok). Moreover, every open set is the disjoint union of a
countable collection of open intervals, and therefore every open set is the
union of an ascending sequence of open sets, each of which is the union of
a finite disjoint collection of open intervals (if the open set is ∪∞k=1Ik
where Ik are open intervals, then define On = ∪n

k=1Ik and the open set is
limn→∞On and {On}∞n=1 is an ascending sequence).
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Theorem 6.9

Theorem 6.9 (continued 3)

Proof (continued). Below we will show that there is δ > 0 such that for
{(ck , dk)}n

k=1 a finite disjoint collection of open subintervals of (a, b):∫
E

Diffh[f ] < ε/2 if m(E ) < δ where E = ∪n
k=1(ck , dk) and 0 < h ≤ 1. (26)

If (26) is established, then for E an open set with E = ∪·∞k=1(ck , dk) we
have by continuity of the integral (Theorem 4.21) that is m(E ) < δ and
0 < h ≤ 1 then∫

E
Diffh[f ] =

∫
∪∞k=1(ck ,dk )

Diffh[f ] = lim
n→∞

(∫
∪n

k=1(ck ,dk )
Diffn[f ]

)
≤ ε

2
. (26′)

Now with (26′) established, if G = ∩∞k=1Ok is a Gδ set where
m(G \ E ) = 0, then. . .
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Theorem 6.9

Theorem 6.9 (continued 4)

Proof (continued).∫
E

Diffh[f ] ≤
∫

G
Diffh[f ] by the monotonicity of the integral

since Diffh[f ] ≥ 0

=

∫
∩∞k=1Ok

Diffh[f ]

= lim
n→∞

(∫
∩n

k=1Ok

Diffh[f ]

)
by Continuity of the Integral

≤ ε

2
since ∩n

k=1Ok is open and (26′) applies.

So establishing (26) yields (25) and the desired result.
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Theorem 6.9

Theorem 6.9 (continued 5)

Proof (continued). Choose δ > 0 so that the definition of absolute
continuity of f on [a, b + 1] is satisfied for ε/2 (where f is extended by
setting f (x) = f (b) for x ∈ (b, b + 1] as on page 113). By the change of
variables used to get (14) on page 113 (and established in the proof of
Corollary 6.4)∫ v

u
Diffh[f ] = Avh[f (v)]− Av[f (u)] =

1

h

∫ v+h

u
f − 1

h

∫ u+h

u
f

=
1

h

∫ h

0
f (x + v)− 1

h

∫ h

0
f (x + u)

=
1

h

∫ h

0
(f (x + v)− f (x + u)) =

1

h

∫ h

0
g(t) dt

for 0 ≤ t ≤ 1 and a ≤ u < v ≤ b and g(t) = f (v + t)− f (u + t) (notice
that this is a Riemann integral since f is hypothesized to be continuous).
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Theorem 6.9

Theorem 6.9 (continued 6)

Theorem 6.9. Let the function f be continuous on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if the
family of divided difference functions {Diffh[f ]}0<h≤1 is uniformly
integrable over [a, b].
Proof (continued). Therefore if {(ck , dk)}n

k=1 is a disjoint collection of

open subintervals of (a, b), then
∫
E Diffh[f ] = 1

h

∫ h
0 g(t) dt where

E = ∪n
k=1(ck , dk) and g(t) =

∑n
k=1[f (dk + t)− f (ck + t)] for all

0 ≤ t ≤ 1. If
∑n

k=1(dk − ck) < δ, then for 0 ≤ t ≤ 1,∑n
k=1((dk + t)− (ck + t)) < δ and

g(t) =
∑n

k=1(f (dk + t)− f (ck + t)) < ε/2 by the choice of δ (to get the
ε/2 in the definition of “f is absolutely continuous”).

Then∫
E Diffh[f ] = 1

h

∫ h
0 g(t) dt < 1

hh(ε/2) = ε/2. So (26) is confirmed and
{Diffh[f ]}0<h≤1 is uniformly integrable.
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