Real Analysis

Chapter 6. Differentiation and Integration

6.4. Absolutely Continuous Functions-Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Proposition 6.7
(2) Theorem 6.8
(3) Theorem 6.9

Proposition 6.7

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval $[a, b]$, then it is absolutely continuous on $[a, b]$.

> Proof. Let $c>0$ be a Lipschitz constant for f on $[a, b]$. That is, $f(u)-f(v)|\leq c| u-v \mid$ for all $u, v \in[a, b]$.

Proposition 6.7

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval $[a, b]$, then it is absolutely continuous on $[a, b]$.

Proof. Let $c>0$ be a Lipschitz constant for f on $[a, b]$. That is, $f(u)-f(v)|\leq c| u-v \mid$ for all $u, v \in[a, b]$. Then with $\delta=\varepsilon / c$, the definition of absolute continuity is satisfied.

Proposition 6.7

Proposition 6.7. If the function f is Lipschitz on a closed, bounded interval $[a, b]$, then it is absolutely continuous on $[a, b]$.

Proof. Let $c>0$ be a Lipschitz constant for f on $[a, b]$. That is, $f(u)-f(v)|\leq c| u-v \mid$ for all $u, v \in[a, b]$. Then with $\delta=\varepsilon / c$, the definition of absolute continuity is satisfied.

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon=1$ in the definition of absolute continuity of f. Let P be a partition of $[a, b]$ into N closed intervals $\left\{\left[c_{k}, d_{k}\right]\right\}_{k=1}^{N}$, each of length less than δ. Since we chose $\varepsilon=1$, we have $T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq 1$ for $1 \leq k \leq n$.

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon=1$ in the definition of absolute continuity of f. Let P be a partition of $[a, b]$ into N closed intervals $\left\{\left[c_{k}, d_{k}\right]\right\}_{k=1}^{N}$, each of length less than δ. Since we chose $\varepsilon=1$, we have $T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the
proof of Lemma 6.5 then gives $T V(f)=\sum_{k=1}^{N} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq N$. Therefore, f is of bounded variation on $[a, b]$.

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon=1$ in the definition of absolute continuity of f. Let P be a partition of $[a, b]$ into N closed intervals $\left\{\left[c_{k}, d_{k}\right]\right\}_{k=1}^{N}$, each of length less than δ. Since we chose $\varepsilon=1$, we have $T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the proof of Lemma 6.5 then gives $T V(f)=\sum_{k=1}^{N} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq N$. Therefore, f is of bounded variation on $[a, b]$.

Now for the "difference of increasing absolutely continuous functions" part. Since f is of bounded variation, by Lemma 6.5,

is absolutely continuous.

Theorem 6.8

Theorem 6.8. Let the function f be absolutely continuous on the closed, bounded interval $[a, b]$. Then f is the difference of increasing absolutely continuous functions and, in particular, is of bounded variation.

Proof. For bounded variation, let δ correspond to $\varepsilon=1$ in the definition of absolute continuity of f. Let P be a partition of $[a, b]$ into N closed intervals $\left\{\left[c_{k}, d_{k}\right]\right\}_{k=1}^{N}$, each of length less than δ. Since we chose $\varepsilon=1$, we have $T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq 1$ for $1 \leq k \leq n$. The additivity formula (19) in the proof of Lemma 6.5 then gives $T V(f)=\sum_{k=1}^{N} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq N$. Therefore, f is of bounded variation on $[a, b]$.

Now for the "difference of increasing absolutely continuous functions" part. Since f is of bounded variation, by Lemma 6.5, $f(x)=\left[f(x)+T V\left(f_{[a, x]}\right)\right]-\left[T V\left(f_{[a, x]}\right)\right]$. So the claim follows if $T V\left(f_{[a, x]}\right)$ is absolutely continuous.

Theorem 6.8 (continued)

Proof (continued). Let $\varepsilon>0$. Choose δ to correspond to $\varepsilon / 2$ in the definition of absolute continuity of f on $[a, b]$. Let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $1 \leq k \leq n$, let P_{k} be a partition of $\left[c_{k}, d_{k}\right]$. Then $\sum_{k=1}^{n} V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)<\varepsilon / 2$ because $V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_{k} is $d_{k}-c_{k}$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon / 2$.

Theorem 6.8 (continued)

Proof (continued). Let $\varepsilon>0$. Choose δ to correspond to $\varepsilon / 2$ in the definition of absolute continuity of f on $[a, b]$. Let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $1 \leq k \leq n$, let P_{k} be a partition of $\left[c_{k}, d_{k}\right]$. Then $\sum_{k=1}^{n} V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)<\varepsilon / 2$ because $V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_{k} is $d_{k}-c_{k}$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon / 2$. Letting P_{k} vary over all partitions of $\left[c_{k}, d_{k}\right]$ gives that $\sum_{k=1}^{n} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq \varepsilon / 2<\varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for $1 \leq k \leq n$, $T V\left(f_{\left[c_{k}, d_{k}\right]}\right)=T V\left(f_{\left[a, d_{k}\right]}\right)-T V\left(f_{\left[a, c_{k}\right]}\right)$.

Theorem 6.8 (continued)

Proof (continued). Let $\varepsilon>0$. Choose δ to correspond to $\varepsilon / 2$ in the definition of absolute continuity of f on $[a, b]$. Let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which
$\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $1 \leq k \leq n$, let P_{k} be a partition of $\left[c_{k}, d_{k}\right]$. Then $\sum_{k=1}^{n} V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)<\varepsilon / 2$ because $V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_{k} is $d_{k}-c_{k}$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon / 2$. Letting P_{k} vary over all partitions of [c_{k}, d_{k}] gives that $\sum_{k=1}^{n} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq \varepsilon / 2<\varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for $1 \leq k \leq n$, $T V\left(f_{\left[c_{k}, d_{k}\right]}\right)=T V\left(f_{\left[a, d_{k}\right]}\right)-T V\left(f_{\left[a, c_{k}\right]}\right)$. Hence, if $\sum_{i=1}^{n}\left(d_{k}-c_{k}\right)<\delta$ then
total variation function $T V\left(f_{[a, x]}\right)$ is absolutely continuous.

Theorem 6.8 (continued)

Proof (continued). Let $\varepsilon>0$. Choose δ to correspond to $\varepsilon / 2$ in the definition of absolute continuity of f on $[a, b]$. Let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which
$\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $1 \leq k \leq n$, let P_{k} be a partition of [$\left.c_{k}, d_{k}\right]$. Then $\sum_{k=1}^{n} V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)<\varepsilon / 2$ because $V\left(f_{\left[c_{k}, d_{k}\right]}, P_{k}\right)$ involves a portion of the differences in function values in the definition of absolute continuity and the sum of the differences of the x values in P_{k} is $d_{k}-c_{k}$, so the the choice of δ we have this sum of differences of function values less than $\varepsilon / 2$. Letting P_{k} vary over all partitions of [c_{k}, d_{k}] gives that $\sum_{k=1}^{n} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq \varepsilon / 2<\varepsilon$. We infer from (21) in the proof of Lemma 6.5 (see page 117) that for $1 \leq k \leq n$, $T V\left(f_{\left[c_{k}, d_{k}\right]}\right)=T V\left(f_{\left[a, d_{k}\right]}\right)-T V\left(f_{\left[a, c_{k}\right]}\right)$. Hence, if $\sum_{i=1}^{n}\left(d_{k}-c_{k}\right)<\delta$ then $\sum_{k=1}^{n}\left|T V\left(f_{\left[a, d_{k}\right]}\right)-T V\left(f_{\left[a, c_{k}\right]}\right)\right|=\sum_{k=1}^{n} T V\left(f_{\left[c_{k}, d_{k}\right]}\right) \leq \varepsilon / 2<\varepsilon$. So the total variation function $T V\left(f_{[a, x]}\right)$ is absolutely continuous.

Theorem 6.9

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.

Proof. First, assume $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$. Let $\varepsilon>0$.

Theorem 6.9

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.

Proof. First, assume $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$. Let $\varepsilon>0$. Choose $\delta>0$ for which (by the definition of uniform integrability) $\epsilon_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2$ if $m(E)<\delta$ and $0<k \leq 1$. To show absolute continuity, let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$.

Theorem 6.9

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.

Proof. First, assume $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$. Let $\varepsilon>0$. Choose $\delta>0$ for which (by the definition of uniform integrability) $\in_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2$ if $m(E)<\delta$ and $0<k \leq 1$. To show absolute continuity, let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $0<h \leq 1$ and $1 \leq k \leq n$ we have by the change of variables formula (14) (also in the proof of Corollary 6.4), $\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]-\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]=\int_{c_{k}}^{d_{k}} \operatorname{Diff}_{h}[f]$. Therefore $\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]-\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right| \leq \sum_{k=1}^{n} \int_{c_{k}}^{d_{k}}\left|\operatorname{Diff}_{h}[f]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|$ (by additivity) where $E \cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ has measure less than δ.

Theorem 6.9

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.

Proof. First, assume $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$. Let $\varepsilon>0$. Choose $\delta>0$ for which (by the definition of uniform integrability) $\in_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2$ if $m(E)<\delta$ and $0<k \leq 1$. To show absolute continuity, let $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ be a disjoint collection of open subintervals of (a, b) for which $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$. For $0<h \leq 1$ and $1 \leq k \leq n$ we have by the change of variables formula (14) (also in the proof of Corollary 6.4), $\mathrm{Av}_{h}\left[f\left(d_{k}\right)\right]-\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]=\int_{c_{k}}^{d_{k}} \operatorname{Diff}_{h}[f]$. Therefore $\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]-\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right| \leq \sum_{k=1}^{n} \int_{c_{k}}^{d_{k}}\left|\operatorname{Diff}_{h}[f]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|$ (by additivity) where $E \cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ has measure less than δ.

Theorem 6.9 (continued 1)

Proof (continued). So by the choice of δ,

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]=\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2 \tag{*}
\end{equation*}
$$

for all $0<h \leq 1$. Since f is continuous then
$\lim _{h \rightarrow 0^{+}} A v_{h}[f]=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f=f(x)$ (as in Calculus 1), so taking a limit as $h \rightarrow 0^{+}$in $(*)$ we get $\sum_{k=1}^{n}\left|f\left(d_{k}\right)-f\left(c_{k}\right)\right|<\varepsilon / 2<\varepsilon$. Hence, f is absolutely continuous on $[a, b]$.

Theorem 6.9 (continued 1)

Proof (continued). So by the choice of δ,

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]=\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2 \tag{*}
\end{equation*}
$$

for all $0<h \leq 1$. Since f is continuous then $\lim _{h \rightarrow 0^{+}} \mathrm{Av}_{h}[f]=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f=f(x)$ (as in Calculus 1), so taking a limit as $h \rightarrow 0^{+}$in $(*)$ we get $\sum_{k=1}^{n}\left|f\left(d_{k}\right)-f\left(c_{k}\right)\right|<\varepsilon / 2<\varepsilon$. Hence, f is absolutely continuous on $[a, b]$.

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f=f_{1}-f_{2}$.

Theorem 6.9 (continued 1)

Proof (continued). So by the choice of δ,

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]=\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2 \tag{*}
\end{equation*}
$$

for all $0<h \leq 1$. Since f is continuous then
$\lim _{h \rightarrow 0^{+}} \mathrm{Av}_{h}[f]=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f=f(x)$ (as in Calculus 1), so taking a limit as $h \rightarrow 0^{+}$in $(*)$ we get $\sum_{k=1}^{n}\left|f\left(d_{k}\right)-f\left(c_{k}\right)\right|<\varepsilon / 2<\varepsilon$. Hence, f is absolutely continuous on $[a, b]$.

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f=f_{1}-f_{2}$. So we can assume WLOG that f is increasing (because $\operatorname{Diff}_{h}[f]=\operatorname{Diff}_{h}\left[f_{1}\right]-\operatorname{Diff}_{h}\left[f_{2}\right]$ and if families $\left\{\operatorname{Diff}_{h}\left[f_{1}\right]\right\}_{0<h \leq 1}$ and $\left\{\operatorname{Diff}_{h}\left[f_{2}\right]\right\}_{0<h \leq 1}$ are uniformly integrable, then $\left\{\operatorname{Diff}_{h}\left[f_{1}-f_{2}\right]\right\}_{0<h \leq 1}$ is uniformly integrable [let $\varepsilon>0$ and choose δ_{1} and δ_{2} for f_{1} and f_{2} to "correspond" to $\varepsilon / 2$, then choose $\left.\delta=\min \left\{\delta_{1}, \delta_{2}\right\}\right]$).

Theorem 6.9 (continued 1)

Proof (continued). So by the choice of δ,

$$
\begin{equation*}
\sum_{k=1}^{n}\left|\operatorname{Av}_{h}\left[f\left(d_{k}\right)\right]=\operatorname{Av}_{h}\left[f\left(c_{k}\right)\right]\right|=\int_{E}\left|\operatorname{Diff}_{h}[f]\right|<\varepsilon / 2 \tag{*}
\end{equation*}
$$

for all $0<h \leq 1$. Since f is continuous then
$\lim _{h \rightarrow 0^{+}} \mathrm{Av}_{h}[f]=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f=f(x)$ (as in Calculus 1), so taking a limit as $h \rightarrow 0^{+}$in $(*)$ we get $\sum_{k=1}^{n}\left|f\left(d_{k}\right)-f\left(c_{k}\right)\right|<\varepsilon / 2<\varepsilon$. Hence, f is absolutely continuous on $[a, b]$.

Now suppose f is absolutely continuous. By Theorem 6.8, f is the difference of two increasing absolutely continuous functions, say $f=f_{1}-f_{2}$. So we can assume WLOG that f is increasing (because $\operatorname{Diff}_{h}[f]=\operatorname{Diff}_{h}\left[f_{1}\right]-\operatorname{Diff}_{h}\left[f_{2}\right]$ and if families $\left\{\operatorname{Diff}_{h}\left[f_{1}\right]\right\}_{0<h \leq 1}$ and $\left\{\operatorname{Diff}_{h}\left[f_{2}\right]\right\}_{0<h \leq 1}$ are uniformly integrable, then $\left\{\operatorname{Diff}_{h}\left[f_{1}-f_{2}\right]\right\}_{0<h \leq 1}$ is uniformly integrable [let $\varepsilon>0$ and choose δ_{1} and δ_{2} for f_{1} and f_{2} to "correspond" to $\varepsilon / 2$, then choose $\left.\delta=\min \left\{\delta_{1}, \delta_{2}\right\}\right]$).

Theorem 6.9 (continued 2)

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\operatorname{Diff}_{h}[f]=(f(x+h)-f(x)) / h \geq 0$. Let $\varepsilon>0$. To show uniform integrability, we must find $\delta>0$ such that for each measurable subset E of (a, b),

$$
\begin{equation*}
\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon \text { if } m(E)<\varepsilon \text { and } 0<h \leq 1 . \tag{25}
\end{equation*}
$$

By Theorem 2.11, measurable set E is contained in a G_{δ} set G for which $m(G \backslash E)=0$.

Theorem 6.9 (continued 2)

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\operatorname{Diff}_{h}[f]=(f(x+h)-f(x)) / h \geq 0$. Let $\varepsilon>0$. To show uniform integrability, we must find $\delta>0$ such that for each measurable subset E of (a, b),

$$
\begin{equation*}
\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon \text { if } m(E)<\varepsilon \text { and } 0<h \leq 1 . \tag{25}
\end{equation*}
$$

By Theorem 2.11, measurable set E is contained in a G_{δ} set G for which $m(G \backslash E)=0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G=\cap_{k=1}^{\infty} \mathcal{O}_{k}$, so take the sequence of open sets as $\left.O_{n}=\cap_{k=1}^{m} \mathcal{O}_{k}\right)$. Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a finite disjoint collection of open intervals

Theorem 6.9 (continued 2)

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\operatorname{Diff}_{h}[f]=(f(x+h)-f(x)) / h \geq 0$. Let $\varepsilon>0$. To show uniform integrability, we must find $\delta>0$ such that for each measurable subset E of (a, b),

$$
\begin{equation*}
\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon \text { if } m(E)<\varepsilon \text { and } 0<h \leq 1 . \tag{25}
\end{equation*}
$$

By Theorem 2.11, measurable set E is contained in a G_{δ} set G for which $m(G \backslash E)=0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G=\cap_{k=1}^{\infty} \mathcal{O}_{k}$, so take the sequence of open sets as $O_{n}=\cap_{k=1}^{m} \mathcal{O}_{k}$). Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a finite disjoint collection of open intervals

Theorem 6.9 (continued 2)

Proof (continued). Therefore the divided differences (WLOG) are nonnegative: $\operatorname{Diff}_{h}[f]=(f(x+h)-f(x)) / h \geq 0$. Let $\varepsilon>0$. To show uniform integrability, we must find $\delta>0$ such that for each measurable subset E of (a, b),

$$
\begin{equation*}
\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon \text { if } m(E)<\varepsilon \text { and } 0<h \leq 1 . \tag{25}
\end{equation*}
$$

By Theorem 2.11, measurable set E is contained in a G_{δ} set G for which $m(G \backslash E)=0$. But every G_{δ} set is the intersection of a descending sequence of open sets ($G=\cap_{k=1}^{\infty} \mathcal{O}_{k}$, so take the sequence of open sets as $O_{n}=\cap_{k=1}^{m} \mathcal{O}_{k}$). Moreover, every open set is the disjoint union of a countable collection of open intervals, and therefore every open set is the union of an ascending sequence of open sets, each of which is the union of a finite disjoint collection of open intervals (if the open set is $\cup_{k=1}^{\infty} I_{k}$ where I_{k} are open intervals, then define $O_{n}=\cup_{k=1}^{n} I_{k}$ and the open set is $\lim _{n \rightarrow \infty} O_{n}$ and $\left\{O_{n}\right\}_{n=1}^{\infty}$ is an ascending sequence).

Theorem 6.9 (continued 3)

Proof (continued). Below we will show that there is $\delta>0$ such that for $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ a finite disjoint collection of open subintervals of (a, b) :
$\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon / 2$ if $m(E)<\delta$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $0<h \leq 1$.
If (26) is established, then for E an open set with $E=\cup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)$ we have by continuity of the integral (Theorem 4.21) that is $m(E)<\delta$ and $0<h \leq 1$ then
$\int_{E} \operatorname{Diff}_{h}[f]=\int_{\cup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{h}[f]=\lim _{n \rightarrow \infty}\left(\int_{\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{n}[f]\right) \leq \frac{\varepsilon}{2}$.

Theorem 6.9 (continued 3)

Proof (continued). Below we will show that there is $\delta>0$ such that for $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ a finite disjoint collection of open subintervals of (a, b) :
$\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon / 2$ if $m(E)<\delta$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $0<h \leq 1$.
If (26) is established, then for E an open set with $E=\vdash_{k=1}^{\infty}\left(c_{k}, d_{k}\right)$ we have by continuity of the integral (Theorem 4.21) that is $m(E)<\delta$ and $0<h \leq 1$ then
$\int_{E} \operatorname{Diff}_{h}[f]=\int_{\cup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{h}[f]=\lim _{n \rightarrow \infty}\left(\int_{\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{n}[f]\right) \leq \frac{\varepsilon}{2}$.
Now with (26') established, if $G=\cap_{k=1}^{\infty} O_{k}$ is a G_{δ} set where $m(G \backslash E)=0$, then.

Theorem 6.9 (continued 3)

Proof (continued). Below we will show that there is $\delta>0$ such that for $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ a finite disjoint collection of open subintervals of (a, b) :
$\int_{E} \operatorname{Diff}_{h}[f]<\varepsilon / 2$ if $m(E)<\delta$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $0<h \leq 1$.
If (26) is established, then for E an open set with $E=\vdash_{k=1}^{\infty}\left(c_{k}, d_{k}\right)$ we have by continuity of the integral (Theorem 4.21) that is $m(E)<\delta$ and $0<h \leq 1$ then
$\int_{E} \operatorname{Diff}_{h}[f]=\int_{\cup_{k=1}^{\infty}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{h}[f]=\lim _{n \rightarrow \infty}\left(\int_{\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)} \operatorname{Diff}_{n}[f]\right) \leq \frac{\varepsilon}{2}$.
Now with (26') established, if $G=\cap_{k=1}^{\infty} O_{k}$ is a G_{δ} set where $m(G \backslash E)=0$, then. . .

Theorem 6.9 (continued 4)

Proof (continued).

$$
\begin{aligned}
\int_{E} \operatorname{Diff}_{h}[f] & \leq \int_{G} \operatorname{Diff}_{h}[f] \text { by the monotonicity of the integral } \\
& =\int_{\cap_{k=1}^{\infty} O_{k}} \text { Diff }_{h}[f] \\
& =\lim _{n \rightarrow \infty}\left(\int_{\cap_{k=1}^{n} O_{k}} \text { Diff }_{h}[f]\right) \text { by Continuity of the Integral } \\
& \leq \frac{\varepsilon}{2} \text { since } \cap_{k=1}^{n} O_{k} \text { is open and (26') applies. }
\end{aligned}
$$

So establishing (26) yields (25) and the desired result.

Theorem 6.9 (continued 5)

Proof (continued). Choose $\delta>0$ so that the definition of absolute continuity of f on $[a, b+1]$ is satisfied for $\varepsilon / 2$ (where f is extended by setting $f(x)=f(b)$ for $x \in(b, b+1]$ as on page 113). By the change of variables used to get (14) on page 113 (and established in the proof of Corollary 6.4)

$$
\begin{aligned}
\int_{u}^{v} \operatorname{Diff}_{h}[f] & =\operatorname{Av}_{h}[f(v)]-\operatorname{Av}[f(u)]=\frac{1}{h} \int_{u}^{v+h} f-\frac{1}{h} \int_{u}^{u+h} f \\
& =\frac{1}{h} \int_{0}^{h} f(x+v)-\frac{1}{h} \int_{0}^{h} f(x+u) \\
& =\frac{1}{h} \int_{0}^{h}(f(x+v)-f(x+u))=\frac{1}{h} \int_{0}^{h} g(t) d t
\end{aligned}
$$

for $0 \leq t \leq 1$ and $a \leq u<v \leq b$ and $g(t)=f(v+t)-f(u+t)$ (notice that this is a Riemann integral since f is hypothesized to be continuous).

Theorem 6.9 (continued 5)

Proof (continued). Choose $\delta>0$ so that the definition of absolute continuity of f on $[a, b+1]$ is satisfied for $\varepsilon / 2$ (where f is extended by setting $f(x)=f(b)$ for $x \in(b, b+1]$ as on page 113). By the change of variables used to get (14) on page 113 (and established in the proof of Corollary 6.4)

$$
\begin{aligned}
\int_{u}^{v} \operatorname{Diff}_{h}[f] & =\operatorname{Av}_{h}[f(v)]-\operatorname{Av}[f(u)]=\frac{1}{h} \int_{u}^{v+h} f-\frac{1}{h} \int_{u}^{u+h} f \\
& =\frac{1}{h} \int_{0}^{h} f(x+v)-\frac{1}{h} \int_{0}^{h} f(x+u) \\
& =\frac{1}{h} \int_{0}^{h}(f(x+v)-f(x+u))=\frac{1}{h} \int_{0}^{h} g(t) d t
\end{aligned}
$$

for $0 \leq t \leq 1$ and $a \leq u<v \leq b$ and $g(t)=f(v+t)-f(u+t)$ (notice that this is a Riemann integral since f is hypothesized to be continuous).

Theorem 6.9 (continued 6)

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.
Proof (continued). Therefore if $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ is a disjoint collection of open subintervals of (a, b), then $\int_{E} \operatorname{Diff}_{h}[f]=\frac{1}{h} \int_{0}^{h} g(t) d t$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $g(t)=\sum_{k=1}^{n}\left[f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right]$ for all $0 \leq t \leq 1$. If $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$, then for $0 \leq t \leq 1$, $\sum_{k=1}^{n}\left(\left(d_{k}+t\right)-\left(c_{k}+t\right)\right)<\delta$ and $g(t)=\sum_{k=1}^{n}\left(f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right)<\varepsilon / 2$ by the choice of δ (to get the $\varepsilon / 2$ in the definition of " f is absolutely continuous").

Theorem 6.9 (continued 6)

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.
Proof (continued). Therefore if $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ is a disjoint collection of open subintervals of (a, b), then $\int_{E} \operatorname{Diff}_{h}[f]=\frac{1}{h} \int_{0}^{h} g(t) d t$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $g(t)=\sum_{k=1}^{n}\left[f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right]$ for all $0 \leq t \leq 1$. If $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$, then for $0 \leq t \leq 1$, $\sum_{k=1}^{n}\left(\left(d_{k}+t\right)-\left(c_{k}+t\right)\right)<\delta$ and $g(t)=\sum_{k=1}^{n}\left(f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right)<\varepsilon / 2$ by the choice of δ (to get the $\varepsilon / 2$ in the definition of " f is absolutely continuous"). Then
$\int_{E} \operatorname{Diff}_{h}[f]=\frac{1}{h} \int_{0}^{h} g(t) d t<\frac{1}{h} h(\varepsilon / 2)=\varepsilon / 2$. So (26) is confirmed and
$\left\{\text { Diff }_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable.

Theorem 6.9 (continued 6)

Theorem 6.9. Let the function f be continuous on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if the family of divided difference functions $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$.
Proof (continued). Therefore if $\left\{\left(c_{k}, d_{k}\right)\right\}_{k=1}^{n}$ is a disjoint collection of open subintervals of (a, b), then $\int_{E} \operatorname{Diff}_{h}[f]=\frac{1}{h} \int_{0}^{h} g(t) d t$ where $E=\cup_{k=1}^{n}\left(c_{k}, d_{k}\right)$ and $g(t)=\sum_{k=1}^{n}\left[f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right]$ for all $0 \leq t \leq 1$. If $\sum_{k=1}^{n}\left(d_{k}-c_{k}\right)<\delta$, then for $0 \leq t \leq 1$,
$\sum_{k=1}^{n}\left(\left(d_{k}+t\right)-\left(c_{k}+t\right)\right)<\delta$ and $g(t)=\sum_{k=1}^{n}\left(f\left(d_{k}+t\right)-f\left(c_{k}+t\right)\right)<\varepsilon / 2$ by the choice of δ (to get the $\varepsilon / 2$ in the definition of " f is absolutely continuous"). Then $\int_{E} \operatorname{Diff}_{h}[f]=\frac{1}{h} \int_{0}^{h} g(t) d t<\frac{1}{h} h(\varepsilon / 2)=\varepsilon / 2$. So (26) is confirmed and $\left\{\operatorname{Diff}_{h}[f]\right\}_{0<h \leq 1}$ is uniformly integrable.

