Chapter 6. Differentiation and Integration
6.5. Integrating Derivatives: Differentiating Indefinite Integrals—Proofs of Theorems
Table of contents

1 Proposition 6.11
2 Corollary 6.12
3 Lemma 6.13
Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$.

[Further proof content here...]

[Continuation of the proof content here...]

...
Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in (a, b)$, f is absolutely continuous over $[a, x] \subseteq [a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x]$, $\int_a^x f' = f(x) - f(a)$ or $f(x) = f(a) + \int_a^x f'$. Thus f is the indefinite integral of f' over $[a, b]$.
Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in (a, b)$, f is absolutely continuous over $[a, x] \subseteq [a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x]$, $\int_a^x f' = f(x) - f(a)$ or $f(x) = f(a) + \int_a^x f'$. Thus f is the indefinite integral of f' over $[a, b]$.

Second, suppose that f is the indefinite integral over $[a, b]$ of g. For a disjoint collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b), if we define $E = \bigcup_{k=1}^n (a_k, b_k)$ then

$$\sum_{k=1}^n |f(b_k) - f(a_k)| = \sum_{k=1}^n \left| \left(f(a) + \int_{a_k}^{b_k} g \right) - \left(f(a) + \int_a^{a_k} g \right) \right|$$

since f is the indefinite integral of g.
Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in (a, b]$, f is absolutely continuous over $[a, x] \subseteq [a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x]$, $\int_a^x f' = f(x) - f(a)$ or $f(x) = f(a) + \int_a^x f'$. Thus f is the indefinite integral of f' over $[a, b]$.

Second, suppose that f is the indefinite integral over $[a, b]$ of g. For a disjoint collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b), if we define $E = \bigcup_{k=1}^n (a_k, b_k)$ then

$$
\sum_{k=1}^n |f(b_k) - f(a_k)| = \left| \sum_{k=1}^n \left(f(a) + \int_a^{b_k} g \right) - \left(f(a) + \int_a^{a_k} g \right) \right|
$$

since f is the indefinite integral of g.
Proposition 6.11 (continued 1)

Proof (continued).

\[\sum_{k=1}^{n} |f(b_k) - f(a_k)| = \sum_{k=1}^{n} \left| \int_{a_k}^{b_k} g \right| \text{ by the additivity of integration} \]

\[\leq \sum_{k=1}^{n} \left(\int_{a_k}^{b_k} |g| \right) \text{ by the Integral Comparison Test} \]

\[= \int_{E} |g| \text{ by additivity.} \quad (32) \]

Let \(\varepsilon > 0 \). Since \(|g| \) is integrable over \([a, b]\), by the definition of indefinite integral, according to Proposition 4.23, there is \(\delta > 0 \) such that \(\int_{E} |g| < \varepsilon \) if \(E \subseteq [a, b] \) is measurable and \(m(E) < \delta \).
Proposition 6.11 (continued 1)

Proof (continued).

\[
\sum_{k=1}^{n} \left| f(b_k) - f(a_k) \right| = \sum_{k=1}^{n} \left| \int_{a_k}^{b_k} g \right| \quad \text{by the additivity of integration}
\]

\[
\leq \sum_{k=1}^{n} \left(\int_{a_k}^{b_k} |g| \right) \quad \text{by the Integral Comparison Test}
\]

\[
= \int_{E} |g| \quad \text{by additivity.} \quad (32)
\]

Let \(\varepsilon > 0 \). Since \(|g|\) is integrable over \([a, b]\), by the definition of indefinite integral, according to Proposition 4.23, there is \(\delta > 0 \) such that \(\int_{E} |g| < \varepsilon \) if \(E \subseteq [a, b] \) is measurable and \(m(E) < \delta \). So if \(\{(a_k, b_k)\}_{k=1}^{n} \) is a collection of open intervals with \(\sum_{k=1}^{n} (b_k - a_k) < \delta \), then (32) implies that \(\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon \) and so the definition of absolute continuity is satisfied and \(f \) is absolutely continuous. \(\square \)
Proposition 6.11 (continued 1)

Proof (continued).

\[
\sum_{k=1}^{n} |f(b_k) - f(a_k)| = \sum_{k=1}^{n} \left| \int_{a_k}^{b_k} g \right| \quad \text{by the additivity of integration}
\]

\[
\leq \sum_{k=1}^{n} \left(\int_{a_k}^{b_k} |g| \right) \quad \text{by the Integral Comparison Test}
\]

\[
= \int_{E} |g| \quad \text{by additivity.} \tag{32}
\]

Let \(\varepsilon > 0 \). Since \(|g| \) is integrable over \([a, b]\), by the definition of indefinite integral, according to Proposition 4.23, there is \(\delta > 0 \) such that \(\int_{E} |g| < \varepsilon \) if \(E \subseteq [a, b] \) is measurable and \(m(E) < \delta \). So if \(\{(a_k, b_k)\}_{k=1}^{n} \) is a collection of open intervals with \(\sum_{k=1}^{n} (b_k - a_k) < \delta \), then (32) implies that \(\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \varepsilon \) and so the definition of absolute continuity is satisfied and \(f \) is absolutely continuous. \(\Box \)
Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$\int_a^b f' = f(b) - f(a).$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.
Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_a^b f' = f(b) - f(a).
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in [a, b]$.
Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_a^b f' = f(b) - f(a).
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in [a, b]$. By additivity of integrals

$$
0 = \int_a^b f' - [f(b) - f(a)] = \left\{ \int_a^x f' - [f(x) - f(a)] \right\}
$$

$$
+ \left\{ \int_x^b f' - [f(b) - f(x)] \right\}.
$$

(33')
Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_a^b f' = f(b) - f(a).
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in [a, b]$. By additivity of integrals

$$
0 = \int_a^b f' - [f(b) - f(a)] = \left\{ \int_a^x f' - [f(x) - f(a)] \right\} + \left\{ \int_x^b f' - [f(b) - f(x)] \right\}.
$$

(33')
Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_a^b f' = f(b) - f(a).
$$

Proof (continued). Since f is increasing, then Corollary 6.4 gives

$$
\int_a^x f' \leq f(x) - f(a) \quad \text{and} \quad \int_x^b f' \leq f(b) - f(x) \text{ or } \int_a^x f' - [f(x) - f(a)] \leq 0
$$

and

$$
\int_x^b f' - [f(b) - f(x)] \leq 0.
$$

So (33’) implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero. Therefore, $\int_a^x f' = f(x) - f(a)$ or $f(x) = f(a) + \int_a^x f'$ for all $x \in [a, b]$, and so f is the indefinite integral of f' (which exists a.e. on $[a, b]$ by Lebesgue’s Theorem).
Corollary 6.12. Let the function \(f \) be monotone on the closed, bounded interval \([a, b]\). Then \(f \) is absolutely continuous on \([a, b]\) if and only if

\[
\int_a^b f' = f(b) - f(a).
\]

Proof (continued). Since \(f \) is increasing, then Corollary 6.4 gives

\[
\int_a^x f' \leq f(x) - f(a) \quad \text{and} \quad \int_x^b f' \leq f(b) - f(x) \quad \text{or} \quad \int_a^x f' - [f(x) - f(a)] \leq 0
\]

and

\[
\int_x^b f' - [f(b) - f(x)] \leq 0.
\]

So (33') implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero. Therefore,

\[
\int_a^x f' = f(x) - f(a) \quad \text{or} \quad f(x) = f(a) + \int_a^x f' \quad \text{for all} \quad x \in [a, b],
\]

and so \(f \) is the indefinite integral of \(f' \) (which exists a.e. on \([a, b]\) by Lebesgue’s Theorem).

By Theorem 6.11, \(f \) is absolutely continuous on \([a, b]\).
Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$\int_a^b f' = f(b) - f(a).$$

Proof (continued). Since f is increasing, then Corollary 6.4 gives

$$\int_a^x f' \leq f(x) - f(a) \quad \text{and} \quad \int_x^b f' \leq f(b) - f(x) \quad \text{or} \quad \int_a^x f' - [f(x) - f(a)] \leq 0$$

and

$$\int_x^b f' - [f(b) - f(x)] \leq 0.$$

So $(33')$ implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero.

Therefore, $\int_a^x f' = f(x) - f(a)$ or $f(x) = f(a) + \int_a^x f'$ for all $x \in [a, b]$, and so f is the indefinite integral of f' (which exists a.e. on $[a, b]$ by Lebesgue's Theorem). By Theorem 6.11, f is absolutely continuous on $[a, b]$. \qed
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof. “Clearly” the first condition implies the second.
Lemma 6.13. Let \(f \) be integrable over the closed bounded interval \([a, b]\). Then \(f(x) = 0 \) for almost all \(x \in [a, b] \) if and only if \(\int_{x_1}^{x_2} f = 0 \) for all \((x_1, x_2) \subseteq [a, b] \).

Proof. “Clearly” the first condition implies the second.

Suppose the integral condition holds. We claim that \(\int_E f = 0 \) for all measurable sets \(E \subseteq [a, b] \). Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20).
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof. “Clearly” the first condition implies the second.

Suppose the integral condition holds. We claim that $\int_E f = 0$ for all measurable sets $E \subseteq [a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_δ set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_G f = 0$ for any G_δ set G. But every measurable set E is of the form $G \setminus E_0$ where G is G_δ and $m(E_0) = 0$ by Theorem 2.11(ii).
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof. “Clearly” the first condition implies the second.

Suppose the integral condition holds. We claim that $\int_E f = 0$ for all measurable sets $E \subseteq [a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_δ set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_G f = 0$ for any G_δ set G. But every measurable set E is of the form $G \setminus E_0$ where G is G_δ and $m(E_0) = 0$ by Theorem 2.11(ii). So $\int_E f = \int_G f + \int_{E \setminus G} f = 0 + 0 = 0$ and the integral equality is verified for all measurable sets E.
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof. “Clearly” the first condition implies the second.

Suppose the integral condition holds. We claim that $\int_E f = 0$ for all measurable sets $E \subseteq [a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_δ set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_G f = 0$ for any G_δ set G. But every measurable set E is of the form $G \setminus E_0$ where G is G_δ and $m(E_0) = 0$ by Theorem 2.11(ii). So $\int_E f = \int_G f + \int_{E \setminus G} f = 0 + 0 = 0$ and the integral equality is verified for all measurable sets E.
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof (continued). Now define $E^+ = \{x \in [a, b] \mid f(x) \geq 0\}$ and $E^- = \{x \in [a, b] \mid f(x) \leq 0\}$. These are measurable subsets of $[a, b]$ and therefore we have $\int_a^b f^+ = \int_{E^+} f = 0$ and $\int_a^b (-f^-) = -\int_{E^-} f = 0$. Since f^+ and f^- are nonnegative, by Proposition 4.9, a nonnegative integrable function with zero integral must vanish a.e. on its domain. Thus f^+ and f^- vanish a.e. on $[a, b]$ and hence $f = 0$ a.e. on $[a, b]$. \qed
Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x) = 0$ for almost all $x \in [a, b]$ if and only if $\int_{x_1}^{x_2} f = 0$ for all $(x_1, x_2) \subseteq [a, b]$.

Proof (continued). Now define $E^+ = \{x \in [a, b] \mid f(x) \geq 0\}$ and $E^- = \{x \in [a, b] \mid f(x) \leq 0\}$. These are measurable subsets of $[a, b]$ and therefore we have $\int_a^b f^+ = \int_{E^+} f = 0$ and $\int_a^b (-f^-) = -\int_{E^-} f = 0$. Since f^+ and f^- are nonnegative, by Proposition 4.9, a nonnegative integrable function with zero integral must vanish a.e. on its domain. Thus f^+ and f^- vanish a.e. on $[a, b]$ and hence $f = 0$ a.e. on $[a, b]$. \qed