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Chapter 6. Differentiation and Integration
6.5. Integrating Derivatives: Differentiating Indefinite Integrals—Proofs of

Theorems
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Proposition 6.11

Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval [a, b] is
absolutely continuous on [a, b] if and only if it is an indefinite integral over
[a, b].

Proof. First, suppose f is absolutely continuous on [a, b].

Then for each
x ∈ (a, b], f is absolutely continuous over [a, x ] ⊆ [a, b] and so, by the
Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with
[a, b] replaced with [a, x ],

∫ x
a f ′ = f (x)− f (a) or f (x) = f (a) +

∫ x
a f ′.

Thus f is the indefinite integral of f ′ over [a, b].

Second, suppose that f is the indefinite integral over [a, b] of g . For a
disjoint collection {(ak , bk}n

k=1 of open intervals in (a, b), if we define
E = ∪n

k=1(ak , bk) then

n∑
k=1

|f (bk)− f (ak)| =
n∑

k=1

∣∣∣∣(f (a) +

∫ bk

a
g

)
−

(
f (a) +

∫ ak

a
g

)∣∣∣∣
since f is the indefinite integral of g
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Proposition 6.11

Proposition 6.11 (continued 1)

Proof (continued).

n∑
k=1

|f (bk)− f (ak)| =
n∑

k=1

∣∣∣∣∫ bk

ak

g

∣∣∣∣ by the additivity of integration

≤
n∑

k=1

(∫ bk

ak

|g |
)

by the Integral Comparison Test

=

∫
E
|g | by additivity. (32)

Let ε > 0. Since |g | is integrable over [a, b], by the definition of indefinite
integral, according to Proposition 4.23, there is δ > 0 such that

∫
E |g | < ε

if E ⊆ [a, b] is measurable and m(E ) < δ.

So if {(ak , bk)}n
k=1 is a

collection of open intervals with
∑n

k=1(bk − ak) < δ, then (32) implies
that

∑n
k=1 |f (bk)− f (ak)| < ε and so the definition of absolute continuity

is satisfied and f is absolutely continuous.
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Corollary 6.12

Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if∫ b

a
f ′ = f (b)− f (a).

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the
absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let x ∈ [a, b].
By additivity of integrals

0 =

∫ b

a
f ′ − [f (b)− f (a)] =

{∫ x

a
f ′ − [f (x)− f (a)]

}

+

{∫ b

x
f ′ − [f (b)− f (x)]

}
. (33′)
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Corollary 6.12

Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if∫ b

a
f ′ = f (b)− f (a).

Proof (continued). Since f is increasing, then Corollary 6.4 gives∫ x
a f ′ ≤ f (x)− f (a) and

∫ b
x f ′ ≤ f (b)− f (x) or

∫ x
a f ′ − [f (x)− f (a)] ≤ 0

and
∫ b
x f ′ − [f (b)− f (x)] ≤ 0. So (33′) implies that the sum of two

nonpositive numbers is zero, and hence the two numbers must be zero.
Therefore,

∫ x
a f ′ = f (x)− f (a) or f (x) = f (a)+

∫ x
a f ′ for all x ∈ [a, b], and

so f is the indefinite integral of f ′ (which exists a.e. on [a, b] by Lebesgue’s
Theorem).

By Theorem 6.11, f is absolutely continuous on [a, b].
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Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if∫ b

a
f ′ = f (b)− f (a).

Proof (continued). Since f is increasing, then Corollary 6.4 gives∫ x
a f ′ ≤ f (x)− f (a) and

∫ b
x f ′ ≤ f (b)− f (x) or

∫ x
a f ′ − [f (x)− f (a)] ≤ 0

and
∫ b
x f ′ − [f (b)− f (x)] ≤ 0. So (33′) implies that the sum of two

nonpositive numbers is zero, and hence the two numbers must be zero.
Therefore,

∫ x
a f ′ = f (x)− f (a) or f (x) = f (a)+

∫ x
a f ′ for all x ∈ [a, b], and

so f is the indefinite integral of f ′ (which exists a.e. on [a, b] by Lebesgue’s
Theorem). By Theorem 6.11, f is absolutely continuous on [a, b].

() Real Analysis January 9, 2016 6 / 8



Corollary 6.12

Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded
interval [a, b]. Then f is absolutely continuous on [a, b] if and only if∫ b

a
f ′ = f (b)− f (a).

Proof (continued). Since f is increasing, then Corollary 6.4 gives∫ x
a f ′ ≤ f (x)− f (a) and

∫ b
x f ′ ≤ f (b)− f (x) or

∫ x
a f ′ − [f (x)− f (a)] ≤ 0

and
∫ b
x f ′ − [f (b)− f (x)] ≤ 0. So (33′) implies that the sum of two

nonpositive numbers is zero, and hence the two numbers must be zero.
Therefore,

∫ x
a f ′ = f (x)− f (a) or f (x) = f (a)+

∫ x
a f ′ for all x ∈ [a, b], and

so f is the indefinite integral of f ′ (which exists a.e. on [a, b] by Lebesgue’s
Theorem). By Theorem 6.11, f is absolutely continuous on [a, b].

() Real Analysis January 9, 2016 6 / 8



Lemma 6.13

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval [a, b].
Then f (x) = 0 for almost all x ∈ [a, b] if and only if

∫ x2

x1
f = 0 for all

(x1, x2) ⊆ [a, b].

Proof. “Clearly” the first condition implies the second.

Suppose the integral condition holds. We claim that
∫
E f = 0 for all

measurable sets E ⊆ [a, b]. Of course this holds for all open sets since an
open set is a countable disjoint union of open intervals and integration is
countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any
Gδ set can be written as the limit of a countable descending collection of
open sets and the continuity of integration (Theorem 4.21) implies that∫
G f = 0 for any Gδ set G . But every measurable set E is of the form

G \ E0 where G is Gδ and m(E0) = 0 by Theorem 2.11(ii). So∫
E f =

∫
G f +

∫
E\G f = 0 + 0 = 0 and the integral equality is verified for

all measurable sets E .
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Lemma 6.13

Lemma 6.13 (continued)

Lemma 6.13. Let f be integrable over the closed bounded interval [a, b].
Then f (x) = 0 for almost all x ∈ [a, b] if and only if

∫ x2

x1
f = 0 for all

(x1, x2) ⊆ [a, b].

Proof (continued). Now define E+ = {x ∈ [a, b] | f (x) ≥ 0} and
E− = {x ∈ [a, b] | f (x) ≤ 0}. These are measureable subsets of [a, b] and

therefore we have
∫ b
a f + =

∫
E+ f = 0 and

∫ b
a (−f −) = −

∫
B− f = 0. Since

f + and f − are nonnegative, by Proposition 4.9, a nonnegative integrable
function with zero integral must vanish a.e. on its domain. Thus f + and
f − vanish a.e. on [a, b] and hence f = 0 a.e. on [a, b].
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