Real Analysis

Chapter 6. Differentiation and Integration

6.5. Integrating Derivatives: Differentiating Indefinite Integrals—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Proposition 6.11
(2) Corollary 6.12
(3) Lemma 6.13

Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$.

Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in(a, b], f$ is absolutely continuous over $[a, x] \subseteq[a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x], \int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$. Thus f is the indefinite integral of f^{\prime} over $[a, b]$.

Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in(a, b], f$ is absolutely continuous over $[a, x] \subseteq[a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x], \int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$. Thus f is the indefinite integral of f^{\prime} over $[a, b]$.

Second, suppose that f is the indefinite integral over $[a, b]$ of g. For a disjoint collection $\left\{\left(a_{k}, b_{k}\right\}_{k=1}^{n}\right.$ of open intervals in (a, b), if we define $E=\cup_{k=1}^{n}\left(a_{k}, b_{k}\right)$ then

since f is the indefinite integral of g

Proposition 6.11

Theorem 6.11. A function f on a closed, bounded interval $[a, b]$ is absolutely continuous on $[a, b]$ if and only if it is an indefinite integral over $[a, b]$.

Proof. First, suppose f is absolutely continuous on $[a, b]$. Then for each $x \in(a, b], f$ is absolutely continuous over $[a, x] \subseteq[a, b]$ and so, by the Fundamental Theorem of Lebesgue Calculus Part 1 (Theorem 6.10), with $[a, b]$ replaced with $[a, x], \int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$. Thus f is the indefinite integral of f^{\prime} over $[a, b]$.

Second, suppose that f is the indefinite integral over $[a, b]$ of g. For a disjoint collection $\left\{\left(a_{k}, b_{k}\right\}_{k=1}^{n}\right.$ of open intervals in (a, b), if we define $E=\cup_{k=1}^{n}\left(a_{k}, b_{k}\right)$ then

$$
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|=\sum_{k=1}^{n}\left|\left(f(a)+\int_{a}^{b_{k}} g\right)-\left(f(a)+\int_{a}^{a_{k}} g\right)\right|
$$

since f is the indefinite integral of g

Proposition 6.11 (continued 1)

Proof (continued).

$$
\begin{align*}
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right| & =\sum_{k=1}^{n}\left|\int_{a_{k}}^{b_{k}} g\right| \text { by the additivity of integration } \\
& \leq \sum_{k=1}^{n}\left(\int_{a_{k}}^{b_{k}}|g|\right) \text { by the Integral Comparison Test } \\
& =\int_{E}|g| \text { by additivity. } \tag{32}
\end{align*}
$$

Let $\varepsilon>0$. Since $|g|$ is integrable over $[a, b]$, by the definition of indefinite integral, according to Proposition 4.23, there is $\delta>0$ such that $\int_{E}|g|<\varepsilon$ if $E \subseteq[a, b]$ is measurable and $m(E)<\delta$.

Proposition 6.11 (continued 1)

Proof (continued).

$$
\begin{align*}
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right| & =\sum_{k=1}^{n}\left|\int_{a_{k}}^{b_{k}} g\right| \text { by the additivity of integration } \\
& \leq \sum_{k=1}^{n}\left(\int_{a_{k}}^{b_{k}}|g|\right) \text { by the Integral Comparison Test } \\
& =\int_{E}|g| \text { by additivity. } \tag{32}
\end{align*}
$$

Let $\varepsilon>0$. Since $|g|$ is integrable over $[a, b]$, by the definition of indefinite integral, according to Proposition 4.23, there is $\delta>0$ such that $\int_{E}|g|<\varepsilon$ if $E \subseteq[a, b]$ is measurable and $m(E)<\delta$. So if $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ is a
collection of open intervals with $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$, then (32) implies that $\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon$ and so the definition of absolute continuity is satisfied and f is absolutely continuous.

Proposition 6.11 (continued 1)

Proof (continued).

$$
\begin{align*}
\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right| & =\sum_{k=1}^{n}\left|\int_{a_{k}}^{b_{k}} g\right| \text { by the additivity of integration } \\
& \leq \sum_{k=1}^{n}\left(\int_{a_{k}}^{b_{k}}|g|\right) \text { by the Integral Comparison Test } \\
& =\int_{E}|g| \text { by additivity. } \tag{32}
\end{align*}
$$

Let $\varepsilon>0$. Since $|g|$ is integrable over $[a, b]$, by the definition of indefinite integral, according to Proposition 4.23, there is $\delta>0$ such that $\int_{E}|g|<\varepsilon$ if $E \subseteq[a, b]$ is measurable and $m(E)<\delta$. So if $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{n}$ is a collection of open intervals with $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$, then (32) implies that $\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\varepsilon$ and so the definition of absolute continuity is satisfied and f is absolutely continuous.

Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in[a, b]$.

Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a) .
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in[a, b]$. By additivity of integrals

$$
+\left\{\int_{x}^{b} f^{\prime}-[f(b)-f(x)]\right\} .
$$

Corollary 6.12

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof. By the Fundamental Theorem of Lebesgue Calculus Part 2, the absolute of continuity of f implies the integral equality holds.

Now suppose f is increasing and the integral equality holds. Let $x \in[a, b]$. By additivity of integrals

$$
\begin{align*}
0=\int_{a}^{b} f^{\prime} & {[f(b)-f(a)]=\left\{\int_{a}^{x} f^{\prime}-[f(x)-f(a)]\right\} } \\
& +\left\{\int_{x}^{b} f^{\prime}-[f(b)-f(x)]\right\} .
\end{align*}
$$

Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof (continued). Since f is increasing, then Corollary 6.4 gives $\int_{a}^{x} f^{\prime} \leq f(x)-f(a)$ and $\int_{x}^{b} f^{\prime} \leq f(b)-f(x)$ or $\int_{a}^{x} f^{\prime}-[f(x)-f(a)] \leq 0$ and $\int_{x}^{b} f^{\prime}-[f(b)-f(x)] \leq 0$. So (33') implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero. Therefore, $\int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$ for all $x \in[a, b]$, and so f is the indefinite integral of f^{\prime} (which exists a.e. on [a,b] by Lebesgue's Theorem).

Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof (continued). Since f is increasing, then Corollary 6.4 gives $\int_{a}^{x} f^{\prime} \leq f(x)-f(a)$ and $\int_{x}^{b} f^{\prime} \leq f(b)-f(x)$ or $\int_{a}^{x} f^{\prime}-[f(x)-f(a)] \leq 0$ and $\int_{x}^{b} f^{\prime}-[f(b)-f(x)] \leq 0$. So $\left(33^{\prime}\right)$ implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero. Therefore, $\int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$ for all $x \in[a, b]$, and so f is the indefinite integral of f^{\prime} (which exists a.e. on $[a, b]$ by Lebesgue's Theorem). By Theorem 6.11, f is absolutely continuous on $[a, b]$.

Corollary 6.12(continued)

Corollary 6.12. Let the function f be monotone on the closed, bounded interval $[a, b]$. Then f is absolutely continuous on $[a, b]$ if and only if

$$
\int_{a}^{b} f^{\prime}=f(b)-f(a)
$$

Proof (continued). Since f is increasing, then Corollary 6.4 gives $\int_{a}^{x} f^{\prime} \leq f(x)-f(a)$ and $\int_{x}^{b} f^{\prime} \leq f(b)-f(x)$ or $\int_{a}^{x} f^{\prime}-[f(x)-f(a)] \leq 0$ and $\int_{x}^{b} f^{\prime}-[f(b)-f(x)] \leq 0$. So $\left(33^{\prime}\right)$ implies that the sum of two nonpositive numbers is zero, and hence the two numbers must be zero. Therefore, $\int_{a}^{x} f^{\prime}=f(x)-f(a)$ or $f(x)=f(a)+\int_{a}^{x} f^{\prime}$ for all $x \in[a, b]$, and so f is the indefinite integral of f^{\prime} (which exists a.e. on $[a, b]$ by Lebesgue's Theorem). By Theorem 6.11, f is absolutely continuous on $[a, b]$.

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof. "Clearly" the first condition implies the second.

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof. "Clearly" the first condition implies the second.
Suppose the integral condition holds. We claim that $\int_{E} f=0$ for all measurable sets $E \subseteq[a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20).

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof. "Clearly" the first condition implies the second.
Suppose the integral condition holds. We claim that $\int_{E} f=0$ for all measurable sets $E \subseteq[a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_{δ} set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_{G} f=0$ for any G_{δ} set G. But every measurable set E is of the form $G \backslash E_{0}$ where G is G_{δ} and $m\left(E_{0}\right)=0$ by Theorem 2.11(ii).

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof. "Clearly" the first condition implies the second.
Suppose the integral condition holds. We claim that $\int_{E} f=0$ for all measurable sets $E \subseteq[a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_{δ} set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_{G} f=0$ for any G_{δ} set G. But every measurable set E is of the form $G \backslash E_{0}$ where G is G_{δ} and $m\left(E_{0}\right)=0$ by Theorem 2.11(ii).
$\int_{E} f=\int_{G} f+\int_{E \backslash G} f=0+0=0$ and the integral equality is verified for all measurable sets E.

Lemma 6.13

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof. "Clearly" the first condition implies the second.
Suppose the integral condition holds. We claim that $\int_{E} f=0$ for all measurable sets $E \subseteq[a, b]$. Of course this holds for all open sets since an open set is a countable disjoint union of open intervals and integration is countably additive (Theorem 4.20). As in the proof of Theorem 6.9, any G_{δ} set can be written as the limit of a countable descending collection of open sets and the continuity of integration (Theorem 4.21) implies that $\int_{G} f=0$ for any G_{δ} set G. But every measurable set E is of the form $G \backslash E_{0}$ where G is G_{δ} and $m\left(E_{0}\right)=0$ by Theorem 2.11(ii). So $\int_{E} f=\int_{G} f+\int_{E \backslash G} f=0+0=0$ and the integral equality is verified for all measurable sets E.

Lemma 6.13 (continued)

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof (continued). Now define $E^{+}=\{x \in[a, b] \mid f(x) \geq 0\}$ and $E^{-}=\{x \in[a, b] \mid f(x) \leq 0\}$. These are measureable subsets of $[a, b]$ and therefore we have $\int_{a}^{b} f^{+}=\int_{E^{+}} f=0$ and $\int_{a}^{b}\left(-f^{-}\right)=-\int_{B^{-}} f=0$. Since f^{+}and f^{-}are nonnegative, by Proposition 4.9, a nonnegative integrable function with zero integral must vanish a.e. on its domain. Thus f^{+}and vanish a.e. on $[a, b]$ and hence $f=0$ a.e. on $[a, b]$.

Lemma 6.13 (continued)

Lemma 6.13. Let f be integrable over the closed bounded interval $[a, b]$. Then $f(x)=0$ for almost all $x \in[a, b]$ if and only if $\int_{x_{1}}^{x_{2}} f=0$ for all $\left(x_{1}, x_{2}\right) \subseteq[a, b]$.

Proof (continued). Now define $E^{+}=\{x \in[a, b] \mid f(x) \geq 0\}$ and $E^{-}=\{x \in[a, b] \mid f(x) \leq 0\}$. These are measureable subsets of $[a, b]$ and therefore we have $\int_{a}^{b} f^{+}=\int_{E^{+}} f=0$ and $\int_{a}^{b}\left(-f^{-}\right)=-\int_{B^{-}} f=0$. Since f^{+}and f^{-}are nonnegative, by Proposition 4.9, a nonnegative integrable function with zero integral must vanish a.e. on its domain. Thus f^{+}and f^{-}vanish a.e. on $[a, b]$ and hence $f=0$ a.e. on $[a, b]$.

