Real Analysis

Chapter 6. Differentiation and Integration 6.6. Convex Functions—Proofs of Theorems

Real Analysis

Table of contents

Proposition 6.15

- 2 The Chordal Slope Lemma
- 3 Corollary 6.17
- Theorem 6.18

5 Lemma

6 Jensen's Inequality

Proposition 6.15. If φ is differentiable on (a, b) and its derivative φ' is increasing, then φ is convex. In particular, if φ'' exists on (a, b) and $\varphi'' \ge 0$ on (a, b), then φ is convex.

Proof. Let $x_1 < x_2$ be in (a, b) and let $x \in (x_1, x_2)$. Since φ is differentiable, then the Mean Value Theorem applies to φ on intervals $[x_1, x]$ and $[x, x_2]$.

Proposition 6.15. If φ is differentiable on (a, b) and its derivative φ' is increasing, then φ is convex. In particular, if φ'' exists on (a, b) and $\varphi'' \ge 0$ on (a, b), then φ is convex.

Proof. Let $x_1 < x_2$ be in (a, b) and let $x \in (x_1, x_2)$. Since φ is differentiable, then the Mean Value Theorem applies to φ on intervals $[x_1, x]$ and $[x, x_2]$. So choose $c_1 \in (x_1, x)$ and $c_2 \in (x, x_2)$ for which $\varphi'(c_1) = (\varphi(x) - \varphi(x_1))/(x - x_1)$ and $\varphi'(c_2) = (\varphi(x_2) - \varphi(x))/(x_2 - x)$.

Proposition 6.15. If φ is differentiable on (a, b) and its derivative φ' is increasing, then φ is convex. In particular, if φ'' exists on (a, b) and $\varphi'' \ge 0$ on (a, b), then φ is convex.

Proof. Let $x_1 < x_2$ be in (a, b) and let $x \in (x_1, x_2)$. Since φ is differentiable, then the Mean Value Theorem applies to φ on intervals $[x_1, x]$ and $[x, x_2]$. So choose $c_1 \in (x_1, x)$ and $c_2 \in (x, x_2)$ for which $\varphi'(c_1) = (\varphi(x) - \varphi(x_1))/(x - x_1)$ and $\varphi'(c_2) = (\varphi(x_2) - \varphi(x))/(x_2 - x)$. Since φ' is increasing then

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1}=\varphi'(c_1)\leq \varphi'(c_2)=\frac{\varphi(x_2)-\varphi(x)}{x_2-x}.$$

So (39) holds and hence φ is convex.

Proposition 6.15. If φ is differentiable on (a, b) and its derivative φ' is increasing, then φ is convex. In particular, if φ'' exists on (a, b) and $\varphi'' \ge 0$ on (a, b), then φ is convex.

Proof. Let $x_1 < x_2$ be in (a, b) and let $x \in (x_1, x_2)$. Since φ is differentiable, then the Mean Value Theorem applies to φ on intervals $[x_1, x]$ and $[x, x_2]$. So choose $c_1 \in (x_1, x)$ and $c_2 \in (x, x_2)$ for which $\varphi'(c_1) = (\varphi(x) - \varphi(x_1))/(x - x_1)$ and $\varphi'(c_2) = (\varphi(x_2) - \varphi(x))/(x_2 - x)$. Since φ' is increasing then

$$rac{arphi(x)-arphi(x_1)}{x-x_1}=arphi'(c_1)\leq arphi'(c_2)=rac{arphi(x_2)-arphi(x)}{x_2-x}.$$

So (39) holds and hence φ is convex.

The Chordal Slope Lemma

The Chordal Slope Lemma. Let φ be convex on (a, b). If $x_1 < x < x_2$ are in (a, b), then for points $P_1 = (x_1, \varphi(x_1))$, $P = (x, \varphi(x))$, and $P_2 = (x_2, \varphi(x_2))$ we have

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1} \leq \frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1} \leq \frac{\varphi(x_2)-\varphi(x)}{x_2-x}$$

That is, the slope of $\overline{P_1P}$ is less than or equal to the slope of $\overline{P_1P_2}$, which is less than or equal to the slope of $\overline{PP_2}$.

Proof. From (38') we have $(x_2 - x_1)\varphi(x) \le x_2\varphi(x_1) - x_1\varphi(x_1) + x_1\varphi(x_1) - x\varphi(x_1) + (x - x_1)\varphi(x_2) = (x_2 - x_1)\varphi(x_1) + (x_1 - x)\varphi(x_1) + (x - x_1)\varphi(x_2)$ if and only if

.

The Chordal Slope Lemma

The Chordal Slope Lemma. Let φ be convex on (a, b). If $x_1 < x < x_2$ are in (a, b), then for points $P_1 = (x_1, \varphi(x_1))$, $P = (x, \varphi(x))$, and $P_2 = (x_2, \varphi(x_2))$ we have

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1} \leq \frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1} \leq \frac{\varphi(x_2)-\varphi(x)}{x_2-x}$$

That is, the slope of $\overline{P_1P}$ is less than or equal to the slope of $\overline{P_1P_2}$, which is less than or equal to the slope of $\overline{PP_2}$.

Proof. From (38') we have

$$(x_2 - x_1)\varphi(x) \le x_2\varphi(x_1) - x_1\varphi(x_1) + x_1\varphi(x_1) - x\varphi(x_1) + (x - x_1)\varphi(x_2) =$$

 $(x_2 - x_1)\varphi(x_1) + (x_1 - x)\varphi(x_1) + (x - x_1)\varphi(x_2)$ if and only if
 $(x_2 - x_1)(\varphi(x) - \varphi(x_1)) \le (x_1 - x)\varphi(x_1) + (x - x_1)\varphi(x_2) =$
 $(x - x_1)(\varphi(x_2) - \varphi(x_1))$ if and only if $\frac{\varphi(x) - \varphi(x_1)}{x - x_1} \le \frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1}$.

.

The Chordal Slope Lemma

The Chordal Slope Lemma. Let φ be convex on (a, b). If $x_1 < x < x_2$ are in (a, b), then for points $P_1 = (x_1, \varphi(x_1))$, $P = (x, \varphi(x))$, and $P_2 = (x_2, \varphi(x_2))$ we have

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1} \leq \frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1} \leq \frac{\varphi(x_2)-\varphi(x)}{x_2-x}$$

That is, the slope of $\overline{P_1P}$ is less than or equal to the slope of $\overline{P_1P_2}$, which is less than or equal to the slope of $\overline{PP_2}$.

Proof. From (38') we have

$$(x_2 - x_1)\varphi(x) \le x_2\varphi(x_1) - x_1\varphi(x_1) + x_1\varphi(x_1) - x\varphi(x_1) + (x - x_1)\varphi(x_2) =$$

 $(x_2 - x_1)\varphi(x_1) + (x_1 - x)\varphi(x_1) + (x - x_1)\varphi(x_2)$ if and only if
 $(x_2 - x_1)(\varphi(x) - \varphi(x_1)) \le (x_1 - x)\varphi(x_1) + (x - x_1)\varphi(x_2) =$
 $(x - x_1)(\varphi(x_2) - \varphi(x_1))$ if and only if $\frac{\varphi(x) - \varphi(x_1)}{x - x_1} \le \frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1}$.

.

The Chordal Slope Lemma (continued)

The Chordal Slope Lemma. Let φ be convex on (a, b). If $x_1 < x < x_2$ are in (a, b), then for points $P_1 = (x_1, \varphi(x_1))$, $P = (x, \varphi(x))$, and $P_2 = (x_2, \varphi(x_2))$ we have

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1} \leq \frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1} \leq \frac{\varphi(x_2)-\varphi(x)}{x_2-x}$$

That is, the slope of $\overline{P_1P}$ is less than or equal to the slope of $\overline{P_1P_2}$, which is less than or equal to the slope of $\overline{PP_2}$. **Proof (continued).** Also from (38') we have $-(x_2 - x)\varphi(x_1) \leq (x - x_1)\varphi(x_2) - (x_2 - x_1)\varphi(x) = x\varphi(x_2) - x_2\varphi(x_2) + x_2\varphi(x_2) - x_1\varphi(x_2) - (x_2 - x_1)\varphi(x) = -(x_2 - x)\varphi(x_2) + (x_2 - x_1)(\varphi(x_2) - \varphi(x))$ if and only if $(x_2 - x)(\varphi(x_2) - \varphi(x_1)) \leq (x_2 - x_1)(\varphi(x_2) - \varphi(x))$ if and only if $\frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} \leq \frac{\varphi(x_2) - \varphi(x)}{x_2 - x}$.

The Chordal Slope Lemma (continued)

The Chordal Slope Lemma. Let φ be convex on (a, b). If $x_1 < x < x_2$ are in (a, b), then for points $P_1 = (x_1, \varphi(x_1))$, $P = (x, \varphi(x))$, and $P_2 = (x_2, \varphi(x_2))$ we have

$$\frac{\varphi(x)-\varphi(x_1)}{x-x_1} \leq \frac{\varphi(x_2)-\varphi(x_1)}{x_2-x_1} \leq \frac{\varphi(x_2)-\varphi(x)}{x_2-x}$$

That is, the slope of $\overline{P_1P}$ is less than or equal to the slope of $\overline{P_1P_2}$, which is less than or equal to the slope of $\overline{PP_2}$. **Proof (continued).** Also from (38') we have $-(x_2 - x)\varphi(x_1) \leq (x - x_1)\varphi(x_2) - (x_2 - x_1)\varphi(x) = x\varphi(x_2) - x_2\varphi(x_2) + x_2\varphi(x_2) - x_1\varphi(x_2) - (x_2 - x_1)\varphi(x) = -(x_2 - x)\varphi(x_2) + (x_2 - x_1)(\varphi(x_2) - \varphi(x)))$ if and only if $(x_2 - x)(\varphi(x_2) - \varphi(x_1)) \leq (x_2 - x_1)(\varphi(x_2) - \varphi(x))$ if and only if $\frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} \leq \frac{\varphi(x_2) - \varphi(x)}{x_2 - x}$.

Corollary 6.17. Let φ be a convex function on (a, b). Then φ is Lipschitz, and therefore absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, for $c \le u < v \le d$,

$$\begin{array}{ll} \varphi'(c^+) &\leq & \varphi'(u^+) \text{ by Lemma 6.16 applied to } u = c \text{ and } v = u \\ &\leq & \frac{\varphi(v) - \varphi(u)}{v - u} \text{ by Lemma 6.16} \\ &\leq & \varphi'(v^-) \text{ by Lemma 6.16 applied to } u = v \text{ and } v = d. \end{array}$$

Corollary 6.17. Let φ be a convex function on (a, b). Then φ is Lipschitz, and therefore absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, for $c \le u < v \le d$,

$$\begin{array}{rcl} \varphi'(c^+) &\leq & \varphi'(u^+) \text{ by Lemma 6.16 applied to } u = c \text{ and } v = u \\ &\leq & \frac{\varphi(v) - \varphi(u)}{v - u} \text{ by Lemma 6.16} \\ &\leq & \varphi'(v^-) \text{ by Lemma 6.16 applied to } u = v \text{ and } v = d. \end{array}$$

Therefore, with $M = \max\{|\varphi'(c^+)|, |\varphi'(d^-)|\}$ (which exist and are finite by Lemma 6.16) we have $|\varphi(v) - \varphi(u)| \le M|v - u|$ for all $u, v \in [c, d]$. So φ is Lipschitz on [u, v].

Corollary 6.17. Let φ be a convex function on (a, b). Then φ is Lipschitz, and therefore absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, for $c \le u < v \le d$,

$$\begin{array}{rcl} \varphi'(c^+) & \leq & \varphi'(u^+) \text{ by Lemma 6.16 applied to } u = c \text{ and } v = u \\ & \leq & \frac{\varphi(v) - \varphi(u)}{v - u} \text{ by Lemma 6.16} \\ & \leq & \varphi'(v^-) \text{ by Lemma 6.16 applied to } u = v \text{ and } v = d. \end{array}$$

Therefore, with $M = \max\{|\varphi'(c^+)|, |\varphi'(d^-)|\}$ (which exist and are finite by Lemma 6.16) we have $|\varphi(v) - \varphi(u)| \le M|v - u|$ for all $u, v \in [c, d]$. So φ is Lipschitz on [u, v]. A Lipschitz function on a closed, bounded interval is absolutely continuous on this interval by Proposition 6.7.

0

Corollary 6.17. Let φ be a convex function on (a, b). Then φ is Lipschitz, and therefore absolutely continuous, on each closed, bounded subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, for $c \le u < v \le d$,

$$\begin{array}{rcl} \varphi'(c^+) & \leq & \varphi'(u^+) \text{ by Lemma 6.16 applied to } u = c \text{ and } v = u \\ & \leq & \frac{\varphi(v) - \varphi(u)}{v - u} \text{ by Lemma 6.16} \\ & \leq & \varphi'(v^-) \text{ by Lemma 6.16 applied to } u = v \text{ and } v = d. \end{array}$$

Therefore, with $M = \max\{|\varphi'(c^+)|, |\varphi'(d^-)|\}$ (which exist and are finite by Lemma 6.16) we have $|\varphi(v) - \varphi(u)| \le M|v - u|$ for all $u, v \in [c, d]$. So φ is Lipschitz on [u, v]. A Lipschitz function on a closed, bounded interval is absolutely continuous on this interval by Proposition 6.7.

Theorem 6.18. Let φ be a convex function on (a, b). Then φ is differentiable except at a countable number of points and its derivative φ' is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions mapping $x \mapsto f'(x^-)$ and $x \mapsto f'(x^+)$ are increasing real-valued functions on (a, b). By Theorem 6.1, these two functions are continuous except at a countable number of points. So, except on a countable subset C of (a, b), both the left-hand and right-hand derivatives of φ are continuous.

Real Analysis

Theorem 6.18. Let φ be a convex function on (a, b). Then φ is differentiable except at a countable number of points and its derivative φ' is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions mapping $x \mapsto f'(x^-)$ and $x \mapsto f'(x^+)$ are increasing real-valued functions on (a, b). By Theorem 6.1, these two functions are continuous except at a countable number of points. So, except on a countable subset C of (a, b), both the left-hand and right-hand derivatives of φ are continuous. Let $x_0 \in (a, b) \setminus C$. Choose a sequence $\{x_n\}$ in (a, b) (and possibly in C) of points greater than x_0 that converges to x_0 . With $u = x_0$ and $v = x_n$ in Lemma 6.16 we have $\varphi'(x_0^-) \leq \varphi'(x_0^+) \leq \varphi'(x_n^-)$.

Real Analysis

Theorem 6.18. Let φ be a convex function on (a, b). Then φ is differentiable except at a countable number of points and its derivative φ' is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions mapping $x \mapsto f'(x^{-})$ and $x \mapsto f'(x^{+})$ are increasing real-valued functions on (a, b). By Theorem 6.1, these two functions are continuous except at a countable number of points. So, except on a countable subset C of (a, b), both the left-hand and right-hand derivatives of φ are continuous. Let $x_0 \in (a, b) \setminus C$. Choose a sequence $\{x_n\}$ in (a, b) (and possibly in C) of points greater than x_0 that converges to x_0 . With $u = x_0$ and $v = x_n$ in Lemma 6.16 we have $\varphi'(x_0^-) \leq \varphi'(x_0^+) \leq \varphi'(x_0^-)$. Now let $n \to \infty$ so that $x_n \rightarrow x_0$. Since the left-hand derivative is continuous at x_0 then $\varphi'(x_0) \to \varphi'(x_0)$. So it must be that $\varphi'(x_0) = \varphi'(x_0)$ and φ is differentiable at x_0 . So φ is differentiable on $(a, b) \setminus C$.

Theorem 6.18. Let φ be a convex function on (a, b). Then φ is differentiable except at a countable number of points and its derivative φ' is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions mapping $x \mapsto f'(x^{-})$ and $x \mapsto f'(x^{+})$ are increasing real-valued functions on (a, b). By Theorem 6.1, these two functions are continuous except at a countable number of points. So, except on a countable subset C of (a, b), both the left-hand and right-hand derivatives of φ are continuous. Let $x_0 \in (a, b) \setminus C$. Choose a sequence $\{x_n\}$ in (a, b) (and possibly in C) of points greater than x_0 that converges to x_0 . With $u = x_0$ and $v = x_n$ in Lemma 6.16 we have $\varphi'(x_0^-) \leq \varphi'(x_0^+) \leq \varphi'(x_0^-)$. Now let $n \to \infty$ so that $x_n \rightarrow x_0$. Since the left-hand derivative is continuous at x_0 then $\varphi'(x_n) \to \varphi'(x_0)$. So it must be that $\varphi'(x_0) = \varphi'(x_0)$ and φ is differentiable at x_0 . So φ is differentiable on $(a, b) \setminus C$.

Theorem 6.18 (continued)

Theorem 6.18. Let φ be a convex function on (a, b). Then φ is differentiable except at a countable number of points and its derivative φ' is an increasing function.

Proof (continued). To show that φ' is an increasing function on $(a, b) \setminus C$, let u < v belong to $(a, b) \setminus C$. Then by Lemma 6.16, $\varphi'(u) \leq \frac{\varphi(u) - \varphi(v)}{u - v} \leq \varphi'(v)$, and so φ' is increasing on $(a, b) \setminus C$.

Lemma

Lemma. Let φ be a convex function on (a, b) and let x_0 belong to (a, b). Then there is a supporting line at x_0 for the graph of φ for every slope between $\varphi'(x_0^-)$ and $\varphi'(x_0^+)$.

Proof. Let $y = m(x - x_0) + \varphi(x_0)$ where $\varphi'(x_0^-) \le m \le \varphi'(x_0^+)$. Then with $u = x_0$ and $v = x \in (x_0, b)$ we have by Lemma 6.16 that $\varphi'(x_0^+) \le (\varphi(x) - \varphi(x_0))/(x - x_0)$ or $\varphi'(x_0^+)(x - x_0) \le \varphi(x) - \varphi(x_0)$.

Lemma

Lemma. Let φ be a convex function on (a, b) and let x_0 belong to (a, b). Then there is a supporting line at x_0 for the graph of φ for every slope between $\varphi'(x_0^-)$ and $\varphi'(x_0^+)$.

Proof. Let $y = m(x - x_0) + \varphi(x_0)$ where $\varphi'(x_0^-) \le m \le \varphi'(x_0^+)$. Then with $u = x_0$ and $v = x \in (x_0, b)$ we have by Lemma 6.16 that $\varphi'(x_0^+) \le (\varphi(x) - \varphi(x_0))/(x - x_0)$ or $\varphi'(x_0^+)(x - x_0) \le \varphi(x) - \varphi(x_0)$. So $m(x - x_0) \le \varphi'(x_0^+)(x - x_0) \le \varphi(x) - \varphi(x_0)$ and $m(x - x_0) + \varphi(x_0) \le \varphi(x)$ for $x \in (x_0, b)$. With $u = x \in (a, x_0)$ and $v = x_0$ we have by Lemma 6.16 that $(\varphi(x_0) - \varphi(x))/(x_0 - x) \le \varphi'(x_0^-)$ or $\varphi(x_0) - \varphi(x) \le \varphi'(x_0^-)(x_0 - x) \le m(x_0 - x)$ or $m(x - x_0) \le \varphi(x) - \varphi(x_0)$, and $m(x - x_0) + \varphi(x_0) \le \varphi(x)$ for $x \in (a, x_0)$.

Lemma

Lemma. Let φ be a convex function on (a, b) and let x_0 belong to (a, b). Then there is a supporting line at x_0 for the graph of φ for every slope between $\varphi'(x_0^-)$ and $\varphi'(x_0^+)$.

Proof. Let $y = m(x - x_0) + \varphi(x_0)$ where $\varphi'(x_0) \leq m \leq \varphi'(x_0)$. Then with $u = x_0$ and $v = x \in (x_0, b)$ we have by Lemma 6.16 that $\varphi'(x_0^+) \leq (\varphi(x) - \varphi(x_0))/(x - x_0)$ or $\varphi'(x_0^+)(x - x_0) \leq \varphi(x) - \varphi(x_0)$. So $m(x - x_0) \le \varphi'(x_0^+)(x - x_0) \le \varphi(x) - \varphi(x_0)$ and $m(x-x_0)+\varphi(x_0)\leq \varphi(x)$ for $x\in (x_0,b)$. With $u=x\in (a,x_0)$ and $v = x_0$ we have by Lemma 6.16 that $(\varphi(x_0) - \varphi(x))/(x_0 - x) \le \varphi'(x_0)$ or $\varphi(x_0) - \varphi(x) \le \varphi'(x_0^-)(x_0 - x) \le m(x_0 - x)$ or $m(x-x_0) \leq \varphi(x) - \varphi(x_0)$, and $m(x-x_0) + \varphi(x_0) \leq \varphi(x)$ for $x \in (a, x_0)$. Hence $y = m(x - x_0) + \varphi(x_0)$ is a supporting line at x_0 provided $\varphi'(x_0^-) < m < \varphi'(x_0^+).$

Lemma

Lemma. Let φ be a convex function on (a, b) and let x_0 belong to (a, b). Then there is a supporting line at x_0 for the graph of φ for every slope between $\varphi'(x_0^-)$ and $\varphi'(x_0^+)$.

Proof. Let $y = m(x - x_0) + \varphi(x_0)$ where $\varphi'(x_0) \leq m \leq \varphi'(x_0)$. Then with $u = x_0$ and $v = x \in (x_0, b)$ we have by Lemma 6.16 that $\varphi'(x_0^+) \leq (\varphi(x) - \varphi(x_0))/(x - x_0)$ or $\varphi'(x_0^+)(x - x_0) \leq \varphi(x) - \varphi(x_0)$. So $m(x - x_0) \le \varphi'(x_0^+)(x - x_0) \le \varphi(x) - \varphi(x_0)$ and $m(x-x_0)+\varphi(x_0)\leq \varphi(x)$ for $x\in (x_0,b)$. With $u=x\in (a,x_0)$ and $v = x_0$ we have by Lemma 6.16 that $(\varphi(x_0) - \varphi(x))/(x_0 - x) \le \varphi'(x_0)$ or $\varphi(x_0) - \varphi(x) \le \varphi'(x_0^-)(x_0 - x) \le m(x_0 - x)$ or $m(x-x_0) \leq \varphi(x) - \varphi(x_0)$, and $m(x-x_0) + \varphi(x_0) \leq \varphi(x)$ for $x \in (a, x_0)$. Hence $y = m(x - x_0) + \varphi(x_0)$ is a supporting line at x_0 provided $\varphi'(x_0^-) \leq m \leq \varphi'(x_0^+).$

Jensen's Inequality

Jensen's Inequality. Let φ be a convex function on $(-\infty, \infty)$, f an integrable function over [0, 1], and $\varphi \circ f$ also integrable over [0, 1]. Then

$$\varphi\left(\int_0^1 f(x)\,dx\right)\leq\int_0^1(\varphi\circ f)(x)\,dx.$$

Proof. Let $\alpha = \int_0^1 f(x) dx$. Choose *m* to lie between the left-hand and right-hand derivative of φ at α . Then by "Lemma" $y = m(t - \alpha) + \varphi(\alpha)$ is a supporting line at $(\alpha, \varphi(\alpha))$ for the graph of φ .

Jensen's Inequality

Jensen's Inequality. Let φ be a convex function on $(-\infty, \infty)$, f an integrable function over [0, 1], and $\varphi \circ f$ also integrable over [0, 1]. Then

$$\varphi\left(\int_0^1 f(x)\,dx\right)\leq\int_0^1(\varphi\circ f)(x)\,dx.$$

Proof. Let $\alpha = \int_0^1 f(x) dx$. Choose *m* to lie between the left-hand and right-hand derivative of φ at α . Then by "Lemma" $y = m(t - \alpha) + \varphi(\alpha)$ is a supporting line at $(\alpha, \varphi(\alpha))$ for the graph of φ . Hence $\varphi(t) \ge m(t - \alpha) + \varphi(\alpha)$ for all $t \in \mathbb{R}$. Since *f* is integrable over [0, 1], then *f* is finite a.e. on [0, 1] by Proposition 4.15, and therefore with t = f(x) we have $\varphi(f(x)) \ge m(f(x) - \alpha) + \varphi(\alpha)$ for almost all $x \in [0, 1]$.

Jensen's Inequality

Jensen's Inequality. Let φ be a convex function on $(-\infty, \infty)$, f an integrable function over [0, 1], and $\varphi \circ f$ also integrable over [0, 1]. Then

$$\varphi\left(\int_0^1 f(x)\,dx\right)\leq\int_0^1(\varphi\circ f)(x)\,dx.$$

Proof. Let $\alpha = \int_0^1 f(x) dx$. Choose *m* to lie between the left-hand and right-hand derivative of φ at α . Then by "Lemma" $y = m(t - \alpha) + \varphi(\alpha)$ is a supporting line at $(\alpha, \varphi(\alpha))$ for the graph of φ . Hence $\varphi(t) \ge m(t - \alpha) + \varphi(\alpha)$ for all $t \in \mathbb{R}$. Since *f* is integrable over [0, 1], then *f* is finite a.e. on [0, 1] by Proposition 4.15, and therefore with t = f(x) we have $\varphi(f(x)) \ge m(f(x) - \alpha) + \varphi(\alpha)$ for almost all $x \in [0, 1]$.

Jensen's Inequality (continued)

Jensen's Inequality. Let φ be a convex function on $(-\infty, \infty)$, f an integrable function over [0, 1], and $\varphi \circ f$ also integrable over [0, 1]. Then

$$\varphi\left(\int_0^1 f(x)\,dx\right)\leq\int_0^1(\varphi\circ f)(x)\,dx.$$

Proof (continued). Since f and $\varphi \circ f$ are hypothesized to be integrable over [0, 1], then by monotonicity of the integral (Theorem 4.17) we have

$$\int_0^1 \varphi(f(x)) \, dx \ge \int_0^1 (m(f(x) - \alpha) + \varphi(\alpha)) \, dx$$

= $m\left(\int_0^1 f(x) \, dx - \int_0^1 \alpha \, dx\right) + \int_0^1 \varphi(\alpha) \, dx$
= $m\left(\int_0^1 f(x) \, dx - \alpha\right) + \varphi(\alpha) = \varphi(\alpha) = \varphi\left(\int_0^1 f(x) \, dx\right).$

Real Analysis