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Proposition 6.15

Proposition 6.15. If ¢ is differentiable on (a, b) and its derivative ¢’ is

increasing, then ¢ is convex. In particular, if ¢ exists on (a, b) and
¢"” > 0on (a,b), then ¢ is convex.
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Proposition 6.15

Proposition 6.15

Proposition 6.15. If ¢ is differentiable on (a, b) and its derivative ¢’ is
increasing, then ¢ is convex. In particular, if ¢ exists on (a, b) and
¢"” >0 on (a,b), then ¢ is convex.

Proof. Let x; < x» be in (a,b) and let x € (x1,x2). Since ¢ is
differentiable, then the Mean Value Theorem applies to ¢ on intervals
[x1,x] and [x, x2].
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Proposition 6.15

Proposition 6.15. If ¢ is differentiable on (a, b) and its derivative ¢’ is
increasing, then ¢ is convex. In particular, if ¢ exists on (a, b) and
¢"” >0 on (a,b), then ¢ is convex.

Proof. Let x; < x» be in (a,b) and let x € (x1,x2). Since ¢ is
differentiable, then the Mean Value Theorem applies to ¢ on intervals
[x1,x] and [x, x2]. So choose ¢ € (x1,x) and ¢ € (x, x2) for which
¢'(c1) = (e(x) = ¢(x))/(x = x1) and ¢'(c2) = (0(x2) — p(x))/(x2 — x).

Real Analysis January 19, 2023 3/ 11



Proposition 6.15

Proposition 6.15. If ¢ is differentiable on (a, b) and its derivative ¢’ is
increasing, then ¢ is convex. In particular, if ¢ exists on (a, b) and
¢"” >0 on (a,b), then ¢ is convex.

Proof. Let x; < x» be in (a,b) and let x € (x1,x2). Since ¢ is
differentiable, then the Mean Value Theorem applies to ¢ on intervals
[x1,x] and [x, x2]. So choose ¢ € (x1,x) and ¢ € (x, x2) for which
2(c1) = (9(x) — 2(0))/(x — x1) and @(2) = ((x2) — (x))/(x2 — x).
Since ¢’ is increasing then

x) — o(x x2) — p(x
QO( ) 90( 1) _ QO/(Cl) < QOI(CZ) _ 90( 2) QD( )
X — X1 X — X
So (39) holds and hence ¢ is convex. O
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The Chordal Slope Lemma

The Chordal Slope Lemma. Let ¢ be convex on (a,b). If x3 < x < x»
are in (a, b), then for points P; = (x1, ¢(x1)), P = (x, ¢(x)), and
Py = (x2, o(x2)) we have

p(x) —la) _ phe) —ela) _ pix) — ¢(x)
X — X1 - Xo — X1 - Xo — X

That is, the slope of P1P is less than or equal to the slope of P;P,, which
is less than or equal to the slope of PPx.
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The Chordal Slope Lemma

The Chordal Slope Lemma. Let ¢ be convex on (a,b). If x3 < x < x»
are in (a, b), then for points P; = (x1, ¢(x1)), P = (x, ¢(x)), and
Py = (x2, o(x2)) we have

p(x) —la) _ phe) —ela) _ pix) — ¢(x)
X — X1 - Xo — X1 - Xo — X

That is, the slope of P1P is less than or equal to the slope of P;P,, which
is less than or equal to the slope of PPx.

Proof. From (38’) we have

(x2 — x1)(x) < xo0(x1) — x10(x1) + x10(x1) — x(x1) + (X — x1)p(x2) =
(x2 — x1)p(x1) + (x1 — x)p(x1) + (x — x1)¢(x2) if and only if
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The Chordal Slope Lemma

The Chordal Slope Lemma. Let ¢ be convex on (a,b). If x3 < x < x»
are in (a, b), then for points P; = (x1, ¢(x1)), P = (x, ¢(x)), and
Py = (x2, o(x2)) we have

p(x) —la) _ phe) —ela) _ pix) — ¢(x)
X — X1 - Xo — X1 - Xo — X

That is, the slope of P1P is less than or equal to the slope of P;P,, which
is less than or equal to the slope of PPx.

Proof. From (38’) we have

(x2 = x1)p(x) < xo0(x1) = x1p(x1) +xa0(x1) — xp(xa) + (x = x1)p(x2) =
(x2 — x1)p(x1) + (x1 — x)p(x1) + (x — x1)¢(x2) if and only if

(x2 = x1)(p(x) = (1)) < (a — x)p(a )JS(X—Xl) px) =
( (

x —x1)(p(x2) — ¢(x1)) if and only if p(x) — () < p(x2) — <P(X1)_
X—=X1 X2 — X1
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The Chordal Slope Lemma

The Chordal Slope Lemma (continued)

The Chordal Slope Lemma. Let ¢ be convex on (a,b). If x3 < x < xp

are in (a, b), then for points P; = (x1, ¢(x1)), P = (x, ¢(x)), and
Py = (x2, p(x2)) we have

p(x) —wla) _ pbe) —ela) _ pix) — ¢(x)
X — X1 - Xo — X1 - Xo — X

That is, the slope of P;P is less than or equal to the slope of P;Ps>, which
is less than or equal to the slope of PP;.

Proof (continued). Also from (38’) we have

—(e = x)e(x) < (x = x1)p(x) — (x2 = x1)e(x) = xp(x2) — x2¢(x2) +
xop(x2) =x1p(x2) = (x2a—x1)p(x) = —(x2a—x)p(x2)+ (2 —x1)(p(x2) —p(x))
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The Chordal Slope Lemma (continued)

The Chordal Slope Lemma. Let ¢ be convex on (a,b). If x3 < x < xp
are in (a, b), then for points P; = (x1, ¢(x1)), P = (x, ¢(x)), and
P> = (x2, 0(x2)) we have

p(x) —wla) _ pbe) —ela) _ pix) — ¢(x)
X — X1 - Xo — X1 - Xo — X

That is, the slope of P;P is less than or equal to the slope of P;Ps>, which

is less than or equal to the slope of PP;.

Proof (continued). Also from (38’) we have

—(2 = x)p(x1) < (x = x1)e(x) — (2 — x1)e(x) = xp(x2) — x20(x2) +

xp(x2) —x1p(x2) — (2 —x1)p(x) = — (2 —x)p(x2) + (2 —x1)(p(x2) — (X))

if and only if (x2 — x)(¢(x2) — ¢(x1)) < (x2 — x1)(p(x2) — ¢(x)) if and

oy if £02) = £0) o) = () .
X0 — X1 X2 — X
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Corollary 6.17

Corollary 6.17

Corollary 6.17. Let ¢ be a convex function on (a, b). Then ¢ is

Lipschitz, and therefore absolutely continuous, on each closed, bounded

subinterval [c, d] of (a, b).
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Corollary 6.17
Corollary 6.17. Let ¢ be a convex function on (a, b). Then ¢ is

Lipschitz, and therefore absolutely continuous, on each closed, bounded
subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, forc < u < v <d,

¢'(ct) < ¢(u") by Lemma 6.16 applied to u = c and v = u
< M by Lemma 6.16
vV—u
< ¢'(v7) by Lemma 6.16
< ¢'(d7) by Lemma 6.16 applied to u = v and v = d.
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Corollary 6.17
Corollary 6.17. Let ¢ be a convex function on (a, b). Then ¢ is

Lipschitz, and therefore absolutely continuous, on each closed, bounded
subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, forc < u < v <d,

¢'(ct) < ¢(u") by Lemma 6.16 applied to u = c and v = u
< M by Lemma 6.16
vV—u
< ¢'(v7) by Lemma 6.16
< ¢'(d7) by Lemma 6.16 applied to u = v and v = d.

Therefore, with M = max{|¢’(c™)|, |¢'(d7)|} (which exist and are finite
by Lemma 6.16) we have |o(v) — ¢(u)| < M|v — u| for all u,v € [c, d].
So ¢ is Lipschitz on [u, v].
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Corollary 6.17
Corollary 6.17. Let ¢ be a convex function on (a, b). Then ¢ is

Lipschitz, and therefore absolutely continuous, on each closed, bounded
subinterval [c, d] of (a, b).

Proof. According to Lemma 6.16, forc < u < v <d,

¢'(ct) < ¢(u") by Lemma 6.16 applied to u = c and v = u
< M by Lemma 6.16
vV—u
< ¢'(v7) by Lemma 6.16
< ¢'(d7) by Lemma 6.16 applied to u = v and v = d.

Therefore, with M = max{|¢’(c™)|, |¢'(d7)|} (which exist and are finite
by Lemma 6.16) we have |o(v) — ¢(u)| < M|v — u| for all u,v € [c, d].
So ¢ is Lipschitz on [u, v]. A Lipschitz function on a closed, bounded
interval is absolutely continuous on this interval by Proposition 6.7. O
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Theorem 6.18

Theorem 6.18. Let ¢ be a convex function on (a, b). Then ¢ is
differentiable except at a countable number of points and its derivative ¢’
is an increasing function.
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Theorem 6.18

Theorem 6.18. Let ¢ be a convex function on (a, b). Then ¢ is
differentiable except at a countable number of points and its derivative ¢’
is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions
mapping x — f'(x~) and x — f’(x™) are increasing real-valued functions
on (a, b). By Theorem 6.1, these two functions are continuous except at a
countable number of points. So, except on a countable subset C of (a, b),
both the left-hand and right-hand derivatives of ¢ are continuous.
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Theorem 6.18

Theorem 6.18. Let ¢ be a convex function on (a, b). Then ¢ is
differentiable except at a countable number of points and its derivative ¢’
is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions
mapping x — f'(x~) and x — f’(x™) are increasing real-valued functions
on (a, b). By Theorem 6.1, these two functions are continuous except at a
countable number of points. So, except on a countable subset C of (a, b),
both the left-hand and right-hand derivatives of ¢ are continuous. Let

xo0 € (a,b) \ C. Choose a sequence {x,} in (a,b) (and possibly in C) of
points greater than xp that converges to xg. With u = xp and v = x, in
Lemma 6.16 we have ¢'(x; ) < ¢'(x) < ¢'(xy)-
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Theorem 6.18

Theorem 6.18. Let ¢ be a convex function on (a, b). Then ¢ is
differentiable except at a countable number of points and its derivative ¢’
is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions
mapping x — f'(x~) and x — f’(x™) are increasing real-valued functions
on (a, b). By Theorem 6.1, these two functions are continuous except at a
countable number of points. So, except on a countable subset C of (a, b),
both the left-hand and right-hand derivatives of ¢ are continuous. Let

xo0 € (a,b) \ C. Choose a sequence {x,} in (a,b) (and possibly in C) of
points greater than xp that converges to xg. With u = xp and v = x, in
Lemma 6.16 we have ¢'(x; ) < ¢'(x) < ¢'(x, ). Now let n — oo so that
Xn — Xg. Since the left-hand derivative is continuous at xg then

¢ (xy) — (x5 ). So it must be that ¢'(x; ) = ¢'(xg") and ¢ is
differentiable at xp. So ¢ is differentiable on (a, b) \ C.
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Theorem 6.18

Theorem 6.18 (continued)

Theorem 6.18. Let ¢ be a convex function on (a,b). Then ¢ is

differentiable except at a countable number of points and its derivative ¢’
is an increasing function.

Proof (continued). To show that ¢’ is an increasing function on
(a,b) \ C, let u < v belong to (a, b) \ C. Then by Lemma 6.16,

¢'(u) < plu) = #lv) < ¢'(v), and so ' is increasing on (a, b) \ C. O
u—v
Real Analysis

January 19, 2023 8 /11



Lemma

Lemma

Lemma. Let ¢ be a convex function on (a, b) and let xg belong to (a, b).

Then there is a supporting line at xg for the graph of ¢ for every slope
between ¢'(x; ) and ¢'(xg").
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Lemma

Lemma. Let ¢ be a convex function on (a, b) and let xg belong to (a, b).
Then there is a supporting line at xg for the graph of ¢ for every slope
between ¢'(x; ) and ¢'(xg").

Proof. Let y = m(x — x0) + ¢(x0) where /(x5 ) < m < /(x5 ). Then
with u = xp and v = x € (xo, b) we have by Lemma 6.16 that
(%) < (2(x) = @(x0))/(x = x0) or ¢'(x5")(x — x0) < (x) — (o).
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Lemma

Lemma. Let ¢ be a convex function on (a, b) and let xg belong to (a, b).
Then there is a supporting line at xg for the graph of ¢ for every slope
between ¢'(x; ) and ¢'(xg").

Proof. Let y = m(x — x0) + ¢(x0) where /(x5 ) < m < /(x5 ). Then
with u = xp and v = x € (xo, b) we have by Lemma 6.16 that

(%) < (2(x) = @(x0))/(x = x0) or ¢'(x5")(x — x0) < (x) — ¢(x0). So
mix - %) < ¢/ )(x - x0) < ¢(x) - ¢(x0) and

m(x — x0) + ¢(x0) < p(x) for x € (x0, b). With u = x € (a,xp) and

v = xp we have by Lemma 6.16 that (¢(x0) — ¢(x))/(x0 — x) < ¢'(xy ) or
p(x0) — ¢(x) < "0 )(x0 = x) < m(xo — x) or

m(x — x0) < p(x) — p(x0), and m(x — xp) + ©(x0) < @(x) for x € (a, x0).

Real Analysis January 19, 2023 9/ 11



Lemma

Lemma. Let ¢ be a convex function on (a, b) and let xg belong to (a, b).
Then there is a supporting line at xg for the graph of ¢ for every slope
between ¢'(x; ) and ¢'(xg").

Proof. Let y = m(x — x0) + ¢(x0) where /(x5 ) < m < /(x5 ). Then
with u = xp and v = x € (xo, b) we have by Lemma 6.16 that

(%) < (2(x) = @(x0))/(x = x0) or ¢'(x5")(x — x0) < (x) — ¢(x0). So
mix - %) < ¢/ )(x - x0) < ¢(x) - ¢(x0) and

m(x — x0) + ¢(x0) < p(x) for x € (x0, b). With u = x € (a,xp) and

v = xp we have by Lemma 6.16 that (¢(x0) — ¢(x))/(x0 — x) < ¢'(xy ) or
p(x0) — ¢(x) < "0 )(x0 = x) < m(xo — x) or

m(x — x0) < p(x) — p(x0), and m(x — xp) + ©(x0) < @(x) for x € (a, x0).
Hence y = m(x — xp) + ¢(xo) is a supporting line at xo provided

¢'(x) <m<o(xg). O
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Jensen’s Inequality

Jensen’s Inequality. Let ¢ be a convex function on (—o0,c0), f an
integrable function over [0, 1], and ¢ o f also integrable over [0, 1]. Then

v (/01 f(x) dx) < /Ol(goo F)(x) dx.
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Jensen’s Inequality

Jensen’s Inequality. Let ¢ be a convex function on (—o0,c0), f an
integrable function over [0, 1], and ¢ o f also integrable over [0, 1]. Then

v (/01 f(x) dx) < /Ol(goo F)(x) dx.

Proof. Let a = fol f(x) dx. Choose m to lie between the left-hand and
right-hand derivative of ¢ at . Then by “Lemma” y = m(t — a) + ¢(«)
is a supporting line at (a, ¢(«)) for the graph of ¢.

Real Analysis January 19, 2023 10 /11



Jensen’s Inequality

Jensen’s Inequality. Let ¢ be a convex function on (—o0,c0), f an
integrable function over [0, 1], and ¢ o f also integrable over [0, 1]. Then

v (/01 f(x) dx) < /Ol(goo F)(x) dx.

Proof. Let a = fol f(x) dx. Choose m to lie between the left-hand and
right-hand derivative of ¢ at . Then by “Lemma” y = m(t — a) + ¢(«)
is a supporting line at (a, ¢(«)) for the graph of . Hence

o(t) > m(t —a) + p(«) for all t € R. Since f is integrable over [0, 1],
then f is finite a.e. on [0, 1] by Proposition 4.15, and therefore with

t = f(x) we have o(f(x)) > m(f(x) — a) + ¢(«) for almost all x € [0, 1].
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Jensen’s Inequality (continued)

Jensen’s Inequality. Let ¢ be a convex function on (—o0, c0), f an
integrable function over [0, 1], and ¢ o f also integrable over [0, 1]. Then

¢ (/01 f(x) dx> < /Ol(goo f)(x) dx.

Proof (continued). Since f and ¢ o f are hypothesized to be integrable
over [0, 1], then by monotonicity of the integral (Theorem 4.17) we have

1 1
/ H(F(x)) dx > / (m(F(x) — ) + () dx
0 0

:m(/olf(x)dx/oladx> +/01g0(oz)dx
:m</01f(x)dx—a>—i—go(oz):go(a):go(/olf(x)dx).
L]
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