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Proposition 6.15

Proposition 6.15

Proposition 6.15. If ϕ is differentiable on (a, b) and its derivative ϕ′ is
increasing, then ϕ is convex. In particular, if ϕ′′ exists on (a, b) and
ϕ′′ ≥ 0 on (a, b), then ϕ is convex.

Proof. Let x1 < x2 be in (a, b) and let x ∈ (x1, x2). Since ϕ is
differentiable, then the Mean Value Theorem applies to ϕ on intervals
[x1, x ] and [x , x2].

So choose c1 ∈ (x1, x) and c2 ∈ (x , x2) for which
ϕ′(c1) = (ϕ(x)− ϕ(x1))/(x − x1) and ϕ′(c2) = (ϕ(x2)− ϕ(x))/(x2 − x).
Since ϕ′ is increasing then

ϕ(x)− ϕ(x1)

x − x1
= ϕ′(c1) ≤ ϕ′(c2) =

ϕ(x2)− ϕ(x)

x2 − x
.

So (39) holds and hence ϕ is convex.
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The Chordal Slope Lemma

The Chordal Slope Lemma

The Chordal Slope Lemma. Let ϕ be convex on (a, b). If x1 < x < x2

are in (a, b), then for points P1 = (x1, ϕ(x1)), P = (x , ϕ(x)), and
P2 = (x2, ϕ(x2)) we have

ϕ(x)− ϕ(x1)

x − x1
≤ ϕ(x2)− ϕ(x1)

x2 − x1
≤ ϕ(x2)− ϕ(x)

x2 − x
.

That is, the slope of P1P is less than or equal to the slope of P1P2, which
is less than or equal to the slope of PP2.

Proof. From (38′) we have
(x2 − x1)ϕ(x) ≤ x2ϕ(x1)− x1ϕ(x1) + x1ϕ(x1)− xϕ(x1) + (x − x1)ϕ(x2) =
(x2 − x1)ϕ(x1) + (x1 − x)ϕ(x1) + (x − x1)ϕ(x2) if and only if

(x2 − x1)(ϕ(x)− ϕ(x1)) ≤ (x1 − x)ϕ(x1) + (x − x1)ϕ(x2) =

(x − x1)(ϕ(x2)− ϕ(x1)) if and only if
ϕ(x)− ϕ(x1)

x − x1
≤ ϕ(x2)− ϕ(x1)

x2 − x1
.
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The Chordal Slope Lemma

The Chordal Slope Lemma (continued)

The Chordal Slope Lemma. Let ϕ be convex on (a, b). If x1 < x < x2
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≤ ϕ(x2)− ϕ(x)

x2 − x
.

That is, the slope of P1P is less than or equal to the slope of P1P2, which
is less than or equal to the slope of PP2.
Proof (continued). Also from (38′) we have
−(x2 − x)ϕ(x1) ≤ (x − x1)ϕ(x2)− (x2 − x1)ϕ(x) = xϕ(x2)− x2ϕ(x2) +
x2ϕ(x2)−x1ϕ(x2)−(x2−x1)ϕ(x) = −(x2−x)ϕ(x2)+(x2−x1)(ϕ(x2)−ϕ(x))
if and only if (x2 − x)(ϕ(x2)− ϕ(x1)) ≤ (x2 − x1)(ϕ(x2)− ϕ(x)) if and

only if
ϕ(x2)− ϕ(x1)
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Corollary 6.17

Corollary 6.17

Corollary 6.17. Let ϕ be a convex function on (a, b). Then ϕ is
Lipschitz, and therefore absolutely continuous, on each closed, bounded
subinterval [c , d ] of (a, b).

Proof. According to Lemma 6.16, for c ≤ u < v ≤ d ,

ϕ′(c+) ≤ ϕ′(u+) by Lemma 6.16 applied to u = c and v = u

≤ ϕ(v)− ϕ(u)

v − u
by Lemma 6.16

≤ ϕ′(v−) by Lemma 6.16

≤ ϕ′(d−) by Lemma 6.16 applied to u = v and v = d .

Therefore, with M = max{|ϕ′(c+)|, |ϕ′(d−)|} (which exist and are finite
by Lemma 6.16) we have |ϕ(v)− ϕ(u)| ≤ M|v − u| for all u, v ∈ [c , d ].
So ϕ is Lipschitz on [u, v ]. A Lipschitz function on a closed, bounded
interval is absolutely continuous on this interval by Proposition 6.7.
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Theorem 6.18

Theorem 6.18

Theorem 6.18. Let ϕ be a convex function on (a, b). Then ϕ is
differentiable except at a countable number of points and its derivative ϕ′

is an increasing function.

Proof. By the inequalities of Lemma 6.16, we have that the functions
mapping x 7→ f ′(x−) and x 7→ f ′(x+) are increasing real-valued functions
on (a, b). By Theorem 6.1, these two functions are continuous except at a
countable number of points. So, except on a countable subset C of (a, b),
both the left-hand and right-hand derivatives of ϕ are continuous.

Let
x0 ∈ (a, b) \ C. Choose a sequence {xn} in (a, b) (and possibly in C) of
points greater than x0 that converges to x0. With u = x0 and v = xn in
Lemma 6.16 we have ϕ′(x−0 ) ≤ ϕ′(x+

0 ) ≤ ϕ′(x−n ). Now let n →∞ so that
xn → x0. Since the left-hand derivative is continuous at x0 then
ϕ′(x−n ) → ϕ′(x−0 ). So it must be that ϕ′(x−0 ) = ϕ′(x+

0 ) and ϕ is
differentiable at x0. So ϕ is differentiable on (a, b) \ C.
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Theorem 6.18

Theorem 6.18 (continued)

Theorem 6.18. Let ϕ be a convex function on (a, b). Then ϕ is
differentiable except at a countable number of points and its derivative ϕ′

is an increasing function.

Proof (continued). To show that ϕ′ is an increasing function on
(a, b) \ C, let u < v belong to (a, b) \ C. Then by Lemma 6.16,

ϕ′(u) ≤ ϕ(u)− ϕ(v)

u − v
≤ ϕ′(v), and so ϕ′ is increasing on (a, b) \ C.
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Lemma

Lemma

Lemma. Let ϕ be a convex function on (a, b) and let x0 belong to (a, b).
Then there is a supporting line at x0 for the graph of ϕ for every slope
between ϕ′(x−0 ) and ϕ′(x+

0 ).

Proof. Let y = m(x − x0) + ϕ(x0) where ϕ′(x−0 ) ≤ m ≤ ϕ′(x+
0 ). Then

with u = x0 and v = x ∈ (x0, b) we have by Lemma 6.16 that
ϕ′(x+

0 ) ≤ (ϕ(x)− ϕ(x0))/(x − x0) or ϕ′(x+
0 )(x − x0) ≤ ϕ(x)− ϕ(x0).

So
m(x − x0) ≤ ϕ′(x+

0 )(x − x0) ≤ ϕ(x)− ϕ(x0) and
m(x − x0) + ϕ(x0) ≤ ϕ(x) for x ∈ (x0, b). With u = x ∈ (a, x0) and
v = x0 we have by Lemma 6.16 that (ϕ(x0)− ϕ(x))/(x0 − x) ≤ ϕ′(x−0 ) or
ϕ(x0)− ϕ(x) ≤ ϕ′(x−0 )(x0 − x) ≤ m(x0 − x) or
m(x − x0) ≤ ϕ(x)− ϕ(x0), and m(x − x0) + ϕ(x0) ≤ ϕ(x) for x ∈ (a, x0).
Hence y = m(x − x0) + ϕ(x0) is a supporting line at x0 provided
ϕ′(x−0 ) ≤ m ≤ ϕ′(x+

0 ).
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ϕ′(x−0 ) ≤ m ≤ ϕ′(x+

0 ).
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Jensen’s Inequality

Jensen’s Inequality

Jensen’s Inequality. Let ϕ be a convex function on (−∞,∞), f an
integrable function over [0, 1], and ϕ ◦ f also integrable over [0, 1]. Then

ϕ

(∫ 1

0
f (x) dx

)
≤

∫ 1

0
(ϕ ◦ f )(x) dx .

Proof. Let α =
∫ 1
0 f (x) dx . Choose m to lie between the left-hand and

right-hand derivative of ϕ at α. Then by “Lemma” y = m(t − α) + ϕ(α)
is a supporting line at (α, ϕ(α)) for the graph of ϕ.

Hence
ϕ(t) ≥ m(t − α) + ϕ(α) for all t ∈ R. Since f is integrable over [0, 1],
then f is finite a.e. on [0, 1] by Proposition 4.15, and therefore with
t = f (x) we have ϕ(f (x)) ≥ m(f (x)− α) + ϕ(α) for almost all x ∈ [0, 1].
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Jensen’s Inequality

Jensen’s Inequality (continued)

Jensen’s Inequality. Let ϕ be a convex function on (−∞,∞), f an
integrable function over [0, 1], and ϕ ◦ f also integrable over [0, 1]. Then

ϕ

(∫ 1

0
f (x) dx

)
≤

∫ 1

0
(ϕ ◦ f )(x) dx .

Proof (continued). Since f and ϕ ◦ f are hypothesized to be integrable
over [0, 1], then by monotonicity of the integral (Theorem 4.17) we have∫ 1

0
ϕ(f (x)) dx ≥

∫ 1

0
(m(f (x)− α) + ϕ(α)) dx

= m

(∫ 1

0
f (x) dx −

∫ 1

0
α dx

)
+

∫ 1

0
ϕ(α) dx

= m

(∫ 1

0
f (x) dx − α

)
+ ϕ(α) = ϕ(α) = ϕ

(∫ 1

0
f (x) dx

)
.
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