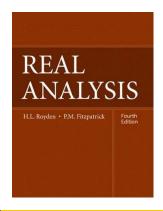
Real Analysis

Chapter 7. The L^p Spaces: Completeness and Approximation 7.2. The Inequalities of Young, Holder, and Minkowski—Proofs of Theorems



Real Analysis

January 30, 2023

Theorem 7.1. Hölder's Inequality

Theorem 7.1. Let E be a measurable set, $1 \le p < \infty$, and g the conjugate of p. If $f \in L^p(E)$ and $g \in L^q(E)$, then fg is integrable over E and

$$\int_{E} |fg| \leq \|f\|_{p} \|g\|_{q}.$$

This is *Hölder's Inequality*. Moreover, if $f \neq 0$, then the function

$$f^* = \begin{cases} \|f\|_p^{1-p} \operatorname{sgn}(f) |f|^{p-1} & \text{if } p > 1\\ \operatorname{sgn}(f) & \text{if } p = 1 \end{cases}$$

is an element of $L^q(E)$,

$$\int_{F} f f^* = \|f\|_{p}$$

and $||f^*||_q = 1$.

Young's Inequality

Young's Inequality.

For 1 and q the conjugate of p, for any positive a and b,

$$ab \leq rac{a^p}{p} + rac{b^q}{q}.$$

Proof. Consider $g(x) = x^p/p + 1/q - x$. Then $g'(x) = x^{p-1} - 1$ and so g'(x) < 0 when $x \in (0,1)$ and g'(x) > 0 when $x \in (1,\infty)$. Therefore g'(x) < 0has a minimum at x = 1 (of 0). So g(x) > 0 for x > 0. Therefore $x < x^p/p + 1/q$ for x > 0. With $x = a/b^{q-1} > 0$ we have

$$egin{array}{ll} rac{a}{b^{q-1}} & \leq & rac{1}{p} \left(rac{a}{b^{q-1}}
ight)^p + rac{1}{q} \ & = & rac{1}{p} rac{a^p}{b^q} + rac{1}{q} ext{ since } p(q-1) = q, \end{array}$$

or $ab \leq a^p/p + b^q/q$.

January 30, 2023

Theorem 7.1. Hölder's Inequality (continued 1)

Proof. If p=1 and $q=\infty$ then

 $\|fg\|_1=\int_F|fg|\leq \|g\|_\infty\int_F|f|=\|f\|_1\|g\|_\infty$, and Hölder's Inequality holds. With p = 1, $f^* = \operatorname{sgn}(f)$ and so $ff^* = |f|$ and $\int_{E} ff^* = \int_{E} |f| = ||f||_{1} = ||f||_{p}. \text{ Also,}$ $||f^*||_{q} = ||f^*||_{\infty} = \text{ess sup}_{x \in E} |f^*(x)| = 1.$

Consider p > 1. The results are trivial if f = 0 or g = 0. "It is clear" that if Hölder's Inequality is true for "normalized" $f/\|f\|_p$ and $g/\|g\|_q$, then it is true for all f and g (as appropriate). So without loss of generality, assume $||f||_p = ||g||_q = 1$. Since $|f|^p$ and $|g|^q$ are integrable over E, then f and g are finite a.e. on E (Proposition 4.13). By Young's Inequality $|fg| = |f||g| \le |f|^p/p + |g|^q/q$ on E. By the Integral Comparison Test, fg is integrable over E and

$$||fg||_1 = \int_E |fg| \le \frac{1}{p} \int_E |f|^p + \frac{1}{q} \int_E |g|^q = \frac{1}{p} + \frac{1}{q} = 1 = ||f||_p ||g||_q.$$

$$ff^* = f \|f\|_p^{1-p} \operatorname{sgn}(f) |f|^{p-1} = \|f\|_p^{1-p} |f|^p,$$

$$\int_{F} f f^* = \|f\|_{p}^{1-p} \int_{F} |f|^{p} = \|f\|_{p}^{1-p} \|f\|_{p}^{p} = \|f\|_{p},$$

and

$$||f^*||_q = \left\{ \int_E \left| ||f||_p^{1-p} \operatorname{sgn}(f) |f|^{p-1} \right|^q \right\}^{1/q}$$

$$= \left\{ \int_E |f|^p \right\}^{1/q} \text{ since } q(p-1) = p$$

$$= \left(\left\{ \int_E |f|^p \right\}^{1/p} \right)^{p/q} = (1)^{p/q} = 1.$$

Real Analysis

Minkowski's Inequality (continued)

Proof (continued). Now $\int_{F} |f(f+g)^*| \leq ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \leq |f(f+g)^*|$ on E, so by the Integral Comparison Test (Proposition 4.16),

$$\int_{E} f(f+g)^{*} \leq \left| \int_{E} f(f+g)^{*} \right| \leq \int_{E} |f(f+g)^{*}| \leq ||f||_{p} ||(f+g)^{*}||_{q}.$$

Similarly $\int_F g(f+g)^* \leq \|g\|_p \|(f+g)^*\|_q$. Hence

$$\begin{split} \|f+g\|_{p} &= \int_{E} f(f+g)^{*} + \int_{E} g(f+g)^{*} \\ &\leq \|f\|_{p} \|(f+g)^{*}\|_{q} + \|g\|_{p} \|(f+g)^{*}\|_{q} \\ &= \|f\|_{p} + \|g\|_{q} \text{ since } \|(f+g)^{*}\|_{q} = 1 \text{ by H\"older's Inequality} \\ &\text{ (the "Moreover" part)}. \end{split}$$

Minkowski's Inequality

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f+g\in L^p(E)$ and

$$||f+g||_p \le ||f||_p + ||g||_p.$$

Proof. We have already seen that the Triangle Inequality holds for p = 1(in Example 7.1.B) and for $p = \infty$ (see Example 7.1.C). So, without loss of generality, we suppose $p \in (1, \infty)$. We saw in Example 7.1.A that for all $a, b \in \mathbb{R}$ we have $|a+b|^p \le 2^p \{|a|^p + |b|^p\}$, and so by monotonicity of integration (Theorem 4.10), $f + g \in L^p(E)$. The result holds if $f + g \equiv 0$, so suppose without loss of generality, $f + g \not\equiv 0$. Consider the conjugate of $(f+g)^* = \|f+g\|_p^{1-p} \operatorname{sgn}(f+g)|f+g|^{p-1}$. We now have

$$||f+g||_p = \int_E (f+g)(f+g)^*$$
 by Theorem 7.1
= $\int_E f(f+g)^* + \int_E g(f+g)^*$.

January 30, 2023

Corollary 7.3

Corollary 7.3. Let E be measurable, $m(E) < \infty$, and $1 < p_1 < p_2 < \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \leq c||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof. Assume $p_2 < \infty$. Define $p = p_2/p_1 > 1$ and let q be the conjugate of p. Let $f \in L^{p_2}(E)$. Then $|f|^{p_1} \in L^p(E)$ and $g = \chi_E \in L^q(E)$ since $m(E) < \infty$. By Hölder's Inequality,

$$\begin{split} &\int_{E} |f|^{p_{1}} = \int_{E} (|f|^{p_{1}}g) \leq \||f|^{p_{1}}\|_{p} \|g\|_{q} = \\ &\left\{ \int_{E} (|f|^{p_{1}})^{p} \right\}^{1/p} \left\{ \int_{E} |g|^{q} \right\}^{1/q} = \left\{ \int_{E} |f|^{p_{2}} \right\}^{p_{1}/p_{2}} \left\{ \int_{E} (\chi_{E})^{q} \right\}^{1/q} = \\ &\|f\|_{p_{2}}^{p_{1}} (m(E))^{1/q} \text{ and so } \left\{ \int_{F} |f|^{p_{1}} \right\}^{1/p_{1}} \leq \|f\|_{p_{2}} (m(E))^{1/(qp_{1})} \text{ where} \end{split}$$

$$\frac{1}{qp_1} = \frac{1}{\left(\frac{p}{p-1}\right)p_1} = \frac{1}{\left(\frac{p_2/p_1}{p_2/p_1-1}\right)p_1} = \frac{p_2/p_1-1}{p_2} = \frac{p_2-p_1}{p_1p_2}.$$

Real Analysis

6 / 10

January 30, 2023

Corollary 7.3 (continued)

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof (continued). If $p_2 = \infty$ and $f \in L^{p_2}(E) = L^{\infty}(E)$, then

$$\int_{E} |f|^{p_{1}} \leq m(E)(\text{ess sup}(f))^{p_{1}} = m(E) \|f\|_{\infty}^{p_{1}} < \infty$$

and $f \in L^{p_1}$. Also,

$$||f||_{p_1} = \left\{ \int_E |f|^{p_1} \right\}^{1/p_1} \le \left\{ m(E) ||f||_{\infty}^{p_1} \right\}^{1/p_1} = (m(E))^{1/p_1} ||f||_{\infty} = c ||f||_{p_1}$$

where
$$c=(m(E))^{1/p_1}$$
.

() Real Analysis January 30, 2023 10 /