Real Analysis

Chapter 7. The *L^p* **Spaces: Completeness and Approximation** 7.2. The Inequalities of Young, Holder, and Minkowski—Proofs of Theorems

Real Analysis

Young's Inequality

- 2 Theorem 7.1. Hölder's Inequality
- 3 Minkowski's Inequality

Young's Inequality

Young's Inequality.

For 1 and <math>q the conjugate of p, for any positive a and b,

$$\mathsf{ab} \leq rac{\mathsf{a}^{\mathsf{p}}}{\mathsf{p}} + rac{\mathsf{b}^{\mathsf{q}}}{\mathsf{q}}.$$

Proof. Consider $g(x) = x^p/p + 1/q - x$. Then $g'(x) = x^{p-1} - 1$ and so g'(x) < 0 when $x \in (0, 1)$ and g'(x) > 0 when $x \in (1, \infty)$. Therefore g has a minimum at x = 1 (of 0). So $g(x) \ge 0$ for x > 0. Therefore $x \le x^p/p + 1/q$ for x > 0. With $x = a/b^{q-1} > 0$ we have

$$\frac{a}{b^{q-1}} \leq \frac{1}{p} \left(\frac{a}{b^{q-1}}\right)^p + \frac{1}{q}$$
$$= \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q} \text{ since } p(q-1) = q$$

or $ab \leq a^p/p + b^q/q$.

Young's Inequality

Young's Inequality.

For 1 and <math>q the conjugate of p, for any positive a and b,

$$\mathsf{a}b \leq rac{\mathsf{a}^{\mathsf{p}}}{\mathsf{p}} + rac{\mathsf{b}^{\mathsf{q}}}{\mathsf{q}}.$$

Proof. Consider $g(x) = x^p/p + 1/q - x$. Then $g'(x) = x^{p-1} - 1$ and so g'(x) < 0 when $x \in (0, 1)$ and g'(x) > 0 when $x \in (1, \infty)$. Therefore g has a minimum at x = 1 (of 0). So $g(x) \ge 0$ for x > 0. Therefore $x \le x^p/p + 1/q$ for x > 0. With $x = a/b^{q-1} > 0$ we have

$$\begin{array}{rcl} \displaystyle \frac{a}{b^{q-1}} & \leq & \displaystyle \frac{1}{p} \left(\frac{a}{b^{q-1}} \right)^p + \displaystyle \frac{1}{q} \\ \\ \displaystyle & = & \displaystyle \frac{1}{p} \frac{a^p}{b^q} + \displaystyle \frac{1}{q} \text{ since } p(q-1) = q, \end{array}$$

or $ab \leq a^p/p + b^q/q$.

Theorem 7.1. Hölder's Inequality

Theorem 7.1. Let *E* be a measurable set, $1 \le p < \infty$, and *q* the conjugate of *p*. If $f \in L^p(E)$ and $g \in L^q(E)$, then *fg* is integrable over *E* and

$$\int_E |fg| \leq \|f\|_p \|g\|_q.$$

This is *Hölder's Inequality*. Moreover, if $f \neq 0$, then the function

J

$$f^* = \begin{cases} \|f\|_{\rho}^{1-\rho} \operatorname{sgn}(f)|f|^{\rho-1} & \text{if } \rho > 1\\ \operatorname{sgn}(f) & \text{if } \rho = 1 \end{cases}$$

is an element of $L^q(E)$,

$$\int_E ff^* = \|f\|_p$$

and $||f^*||_q = 1$.

Theorem 7.1. Hölder's Inequality (continued 1)

Proof. If p = 1 and $q = \infty$ then $\|fg\|_1 = \int_E |fg| \le \|g\|_{\infty} \int_E |f| = \|f\|_1 \|g\|_{\infty}$, and Hölder's Inequality holds. With p = 1, $f^* = \text{sgn}(f)$ and so $ff^* = |f|$ and $\int_E ff^* = \int_E |f| = \|f\|_1 = \|f\|_p$. Also, $\|f^*\|_q = \|f^*\|_{\infty} = \text{ess sup}_{x \in E} |f^*(x)| = 1$.

Consider p > 1. The results are trivial if f = 0 or g = 0. "It is clear" that if Hölder's Inequality is true for "normalized" $f/||f||_p$ and $g/||g||_q$, then it is true for all f and g (as appropriate). So without loss of generality, assume $||f||_p = ||g||_q = 1$. Since $|f|^p$ and $|g|^q$ are integrable over E, then f and g are finite a.e. on E (Proposition 4.13).

Theorem 7.1. Hölder's Inequality (continued 1)

Proof. If p = 1 and $q = \infty$ then $\|fg\|_1 = \int_E |fg| \le \|g\|_{\infty} \int_E |f| = \|f\|_1 \|g\|_{\infty}$, and Hölder's Inequality holds. With p = 1, $f^* = \text{sgn}(f)$ and so $ff^* = |f|$ and $\int_E ff^* = \int_E |f| = \|f\|_1 = \|f\|_p$. Also, $\|f^*\|_q = \|f^*\|_{\infty} = \text{ess sup}_{x \in E} |f^*(x)| = 1$.

Consider p > 1. The results are trivial if f = 0 or g = 0. "It is clear" that if Hölder's Inequality is true for "normalized" $f/||f||_p$ and $g/||g||_q$, then it is true for all f and g (as appropriate). So without loss of generality, assume $||f||_p = ||g||_q = 1$. Since $|f|^p$ and $|g|^q$ are integrable over E, then f and g are finite a.e. on E (Proposition 4.13). By Young's Inequality $|fg| = |f||g| \le |f|^p/p + |g|^q/q$ on E. By the Integral Comparison Test, fgis integrable over E and

$$\|fg\|_1 = \int_E |fg| \le \frac{1}{p} \int_E |f|^p + \frac{1}{q} \int_E |g|^q = \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \|g\|_q.$$

Theorem 7.1. Hölder's Inequality (continued 1)

Proof. If p = 1 and $q = \infty$ then $\|fg\|_1 = \int_E |fg| \le \|g\|_{\infty} \int_E |f| = \|f\|_1 \|g\|_{\infty}$, and Hölder's Inequality holds. With p = 1, $f^* = \text{sgn}(f)$ and so $ff^* = |f|$ and $\int_E ff^* = \int_E |f| = \|f\|_1 = \|f\|_p$. Also, $\|f^*\|_q = \|f^*\|_{\infty} = \text{ess sup}_{x \in E} |f^*(x)| = 1$.

Consider p > 1. The results are trivial if f = 0 or g = 0. "It is clear" that if Hölder's Inequality is true for "normalized" $f/||f||_p$ and $g/||g||_q$, then it is true for all f and g (as appropriate). So without loss of generality, assume $||f||_p = ||g||_q = 1$. Since $|f|^p$ and $|g|^q$ are integrable over E, then f and g are finite a.e. on E (Proposition 4.13). By Young's Inequality $|fg| = |f||g| \le |f|^p/p + |g|^q/q$ on E. By the Integral Comparison Test, fgis integrable over E and

$$\|fg\|_1 = \int_E |fg| \le \frac{1}{p} \int_E |f|^p + \frac{1}{q} \int_E |g|^q = \frac{1}{p} + \frac{1}{q} = 1 = \|f\|_p \|g\|_q.$$

Theorem 7.1. Hölder's Inequality (continued 2)

Proof (continued). Finally,

$$ff^* = f ||f||_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} = ||f||_p^{1-p}|f|^p,$$
$$\int_E ff^* = ||f||_p^{1-p} \int_E |f|^p = ||f||_p^{1-p} ||f||_p^p = ||f||_p,$$

and

$$f^* \|_q = \left\{ \int_E \left| \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} \right|^q \right\}^{1/q} \\ = \left\{ \int_E |f|^p \right\}^{1/q} \text{ since } q(p-1) = p \\ = \left(\left\{ \int_E |f|^p \right\}^{1/p} \right)^{p/q} = (1)^{p/q} = 1$$

- ()

Theorem 7.1. Hölder's Inequality (continued 2)

Proof (continued). Finally,

$$ff^* = f ||f||_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} = ||f||_p^{1-p}|f|^p,$$
$$\int_E ff^* = ||f||_p^{1-p} \int_E |f|^p = ||f||_p^{1-p} ||f||_p^p = ||f||_p,$$

and

$$f^* \|_q = \left\{ \int_E \left| \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} \right|^q \right\}^{1/q}$$

= $\left\{ \int_E |f|^p \right\}^{1/q}$ since $q(p-1) = p$
= $\left(\left\{ \int_E |f|^p \right\}^{1/p} \right)^{p/q} = (1)^{p/q} = 1.$

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f + g \in L^p(E)$ and

 $||f+g||_{p} \leq ||f||_{p} + ||g||_{p}.$

Proof. We have already seen that the Triangle Inequality holds for p = 1 (in Example 7.1.B) and for $p = \infty$ (see Example 7.1.C). So, without loss of generality, we suppose $p \in (1, \infty)$. We saw in Example 7.1.A that for all $a, b \in \mathbb{R}$ we have $|a + b|^p \leq 2^p \{|a|^p + |b|^p\}$, and so by monotonicity of integration (Theorem 4.10), $f + g \in L^p(E)$.

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f + g \in L^p(E)$ and

 $||f+g||_{p} \leq ||f||_{p} + ||g||_{p}.$

Proof. We have already seen that the Triangle Inequality holds for p = 1 (in Example 7.1.B) and for $p = \infty$ (see Example 7.1.C). So, without loss of generality, we suppose $p \in (1, \infty)$. We saw in Example 7.1.A that for all $a, b \in \mathbb{R}$ we have $|a + b|^p \leq 2^p \{|a|^p + |b|^p\}$, and so by monotonicity of integration (Theorem 4.10), $f + g \in L^p(E)$. The result holds if $f + g \equiv 0$, so suppose without loss of generality, $f + g \not\equiv 0$. Consider the conjugate of f + g, $(f + g)^* = ||f + g||_p^{1-p} \operatorname{sgn}(f + g)|f + g|^{p-1}$.

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f + g \in L^p(E)$ and

 $||f+g||_{p} \leq ||f||_{p} + ||g||_{p}.$

Proof. We have already seen that the Triangle Inequality holds for p = 1 (in Example 7.1.B) and for $p = \infty$ (see Example 7.1.C). So, without loss of generality, we suppose $p \in (1, \infty)$. We saw in Example 7.1.A that for all $a, b \in \mathbb{R}$ we have $|a + b|^p \leq 2^p \{|a|^p + |b|^p\}$, and so by monotonicity of integration (Theorem 4.10), $f + g \in L^p(E)$. The result holds if $f + g \equiv 0$, so suppose without loss of generality, $f + g \not\equiv 0$. Consider the conjugate of f + g, $(f + g)^* = ||f + g||_p^{1-p} \operatorname{sgn}(f + g)|f + g|^{p-1}$. We now have

$$\|f+g\|_{p} = \int_{E} (f+g)(f+g)^{*}$$
 by Theorem 7.3
= $\int_{E} f(f+g)^{*} + \int_{E} g(f+g)^{*}.$

Minkowski's Inequality.

Let E be measurable and $1 \le p \le \infty$. If f and g belong to $L^p(E)$, then $f + g \in L^p(E)$ and

 $||f+g||_{p} \leq ||f||_{p} + ||g||_{p}.$

Proof. We have already seen that the Triangle Inequality holds for p = 1(in Example 7.1.B) and for $p = \infty$ (see Example 7.1.C). So, without loss of generality, we suppose $p \in (1, \infty)$. We saw in Example 7.1.A that for all $a, b \in \mathbb{R}$ we have $|a + b|^p < 2^p \{ |a|^p + |b|^p \}$, and so by monotonicity of integration (Theorem 4.10), $f + g \in L^p(E)$. The result holds if $f + g \equiv 0$, so suppose without loss of generality, $f + g \neq 0$. Consider the conjugate of $(f + g)^* = ||f + g||_p^{1-p} \operatorname{sgn}(f + g)|f + g|^{p-1}$. We now have $||f + g||_{\rho} = \int_{\sigma} (f + g)(f + g)^*$ by Theorem 7.1 $= \int_{E} f(f+g)^* + \int_{E} g(f+g)^*.$

Minkowski's Inequality (continued)

Proof (continued). Now $\int_E |f(f+g)^*| \le ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \le |f(f+g)^*|$ on E, so by the Integral Comparison Test (Proposition 4.16),

$$\int_{E} f(f+g)^{*} \leq \left| \int_{E} f(f+g)^{*} \right| \leq \int_{E} |f(f+g)^{*}| \leq \|f\|_{p} \|(f+g)^{*}\|_{q}.$$

Similarly $\int_E g(f+g)^* \leq \|g\|_p \|(f+g)^*\|_q$. Hence

$$\begin{split} \|f + g\|_{p} &= \int_{E} f(f + g)^{*} + \int_{E} g(f + g)^{*} \\ &\leq \|f\|_{p} \|(f + g)^{*}\|_{q} + \|g\|_{p} \|(f + g)^{*}\|_{q} \\ &= \|f\|_{p} + \|g\|_{q} \text{ since } \|(f + g)^{*}\|_{q} = 1 \text{ by Hölder's Inequality} \\ &\quad \text{ (the "Moreover" part).} \end{split}$$

Minkowski's Inequality (continued)

Proof (continued). Now $\int_E |f(f+g)^*| \le ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \le |f(f+g)^*|$ on E, so by the Integral Comparison Test (Proposition 4.16),

$$\int_{E} f(f+g)^{*} \leq \left| \int_{E} f(f+g)^{*} \right| \leq \int_{E} |f(f+g)^{*}| \leq \|f\|_{p} \|(f+g)^{*}\|_{q}.$$

Similarly $\int_E g(f+g)^* \leq \|g\|_p \|(f+g)^*\|_q.$ Hence

$$\begin{split} \|f + g\|_{p} &= \int_{E} f(f + g)^{*} + \int_{E} g(f + g)^{*} \\ &\leq \|f\|_{p} \|(f + g)^{*}\|_{q} + \|g\|_{p} \|(f + g)^{*}\|_{q} \\ &= \|f\|_{p} + \|g\|_{q} \text{ since } \|(f + g)^{*}\|_{q} = 1 \text{ by Hölder's Inequality} \\ &\quad \text{ (the "Moreover" part).} \end{split}$$

Corollary 7.3

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof. Assume $p_2 < \infty$. Define $p = p_2/p_1 > 1$ and let q be the conjugate of p. Let $f \in L^{p_2}(E)$. Then $|f|^{p_1} \in L^p(E)$ and $g = \chi_E \in L^q(E)$ since $m(E) < \infty$.

Corollary 7.3

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof. Assume $p_2 < \infty$. Define $p = p_2/p_1 > 1$ and let q be the conjugate of p. Let $f \in L^{p_2}(E)$. Then $|f|^{p_1} \in L^p(E)$ and $g = \chi_E \in L^q(E)$ since $m(E) < \infty$. By Hölder's Inequality,

$$\begin{split} &\int_{E} |f|^{p_{1}} = \int_{E} (|f|^{p_{1}}g) \leq \||f|^{p_{1}}\|_{p} \|g\|_{q} = \\ &\left\{\int_{E} (|f|^{p_{1}})^{p}\right\}^{1/p} \left\{\int_{E} |g|^{q}\right\}^{1/q} = \left\{\int_{E} |f|^{p_{2}}\right\}^{p_{1}/p_{2}} \left\{\int_{E} (\chi_{E})^{q}\right\}^{1/q} = \\ &\|f\|_{p_{2}}^{p_{1}}(m(E))^{1/q} \text{ and so } \left\{\int_{E} |f|^{p_{1}}\right\}^{1/p_{1}} \leq \|f\|_{p_{2}}(m(E))^{1/(qp_{1})} \text{ where} \end{split}$$

$$\frac{1}{qp_1} = \frac{1}{\left(\frac{p}{p-1}\right)p_1} = \frac{1}{\left(\frac{p_2/p_1}{p_2/p_1-1}\right)p_1} = \frac{p_2/p_1-1}{p_2} = \frac{p_2-p_1}{p_1p_2}.$$

Corollary 7.3

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof. Assume $p_2 < \infty$. Define $p = p_2/p_1 > 1$ and let q be the conjugate of p. Let $f \in L^{p_2}(E)$. Then $|f|^{p_1} \in L^p(E)$ and $g = \chi_E \in L^q(E)$ since $m(E) < \infty$. By Hölder's Inequality, $\int_E |f|^{p_1} = \int_E (|f|^{p_1}g) \le |||f|^{p_1}||_p ||g||_q =$ $\left\{\int_E (|f|^{p_1})^p\right\}^{1/p} \left\{\int_E |g|^q\right\}^{1/q} = \left\{\int_E |f|^{p_2}\right\}^{p_1/p_2} \left\{\int_E (\chi_E)^q\right\}^{1/q} =$ $||f||^{p_1}_{p_2}(m(E))^{1/q}$ and so $\left\{\int_E |f|^{p_1}\right\}^{1/p_1} \le ||f||_{p_2}(m(E))^{1/(qp_1)}$ where

$$\frac{1}{qp_1} = \frac{1}{\left(\frac{p}{p-1}\right)p_1} = \frac{1}{\left(\frac{p_2/p_1}{p_2/p_1-1}\right)p_1} = \frac{p_2/p_1-1}{p_2} = \frac{p_2-p_1}{p_1p_2}.$$

Corollary 7.3 (continued)

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof (continued). If $p_2 = \infty$ and $f \in L^{p_2}(E) = L^{\infty}(E)$, then

$$\int_{E} |f|^{p_{1}} \leq m(E)(\mathrm{ess}\, \mathrm{sup}(f))^{p_{1}} = m(E) \|f\|_{\infty}^{p_{1}} < \infty$$

and $f \in L^{p_1}$. Also,

$$\|f\|_{p_1} = \left\{\int_E |f|^{p_1}\right\}^{1/p_1} \le \{m(E)\|f\|_{\infty}^{p_1}\}^{1/p_1} = (m(E))^{1/p_1}\|f\|_{\infty} = c\|f\|_{p_1}$$

where $c = (m(E))^{1/p_1}$.

Corollary 7.3 (continued)

Corollary 7.3. Let *E* be measurable, $m(E) < \infty$, and $1 \le p_1 < p_2 \le \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, $||f||_{p_1} \le c ||f||_{p_2}$ for all $f \in L^{p_2}(E)$ where $c = (m(E))^{(p_2-p_1)/(p_1p_2)}$ if $p_2 < \infty$ and $c = (m(E))^{1/p_1}$ if $p_2 = \infty$.

Proof (continued). If $p_2 = \infty$ and $f \in L^{p_2}(E) = L^{\infty}(E)$, then

$$\int_{E} |f|^{p_{1}} \leq m(E)(\mathrm{ess}\, \mathrm{sup}(f))^{p_{1}} = m(E) \|f\|_{\infty}^{p_{1}} < \infty$$

and $f \in L^{p_1}$. Also,

$$\|f\|_{p_1} = \left\{\int_E |f|^{p_1}\right\}^{1/p_1} \le \{m(E)\|f\|_{\infty}^{p_1}\}^{1/p_1} = (m(E))^{1/p_1}\|f\|_{\infty} = c\|f\|_{p_1}$$

where $c = (m(E))^{1/p_1}$.