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Proposition 7.5

Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly
Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has
a rapidly Cauchy subsequence.

Proof. Let {f,} be rapidly Cauchy in X with {e,}?° as described above.
Then

n+k—1 n+k—1 n+k—1 0o
Mok —fall = || D (Fa—=H)|[ < D Ifia—fll< Y <> &
Jj=n Jj=n j=n Jj=n

Since >3 ; ek converges, then > 22 | €2 converges (s — 0, eventually
€i < ek, and the Comparison Test). Therefore for n “sufficiently large,”

> itn 512 is “small” hence {f,} is a Cauchy sequence.

Now assume {f,} is Cauchy in X. For any f,, we may find, by the Cauchy
property, f,,., such that ||, ., — fo || < (1/2)k = £2. Then

Ng41 k+1
S ek =22 ,(1/V22)k converges (geometric series). So {f,,} is
rapidly Cauchy. O
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Proposition 7.4

Proposition 7.4. Let X be a normed linear space. Then every convergent
sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if
it has a convergent subsequence.
Proof. Let {f,} — f in X. Then
o — fmll = [|[(fa = F) + (f = )| < ||fa — Fl| +||f — fim]| for all myn e N.
Let £ > 0 and N € N such that for all values of the index greater than N,
we have ||f, — f|| < €/2. Then for all m,n > N, we have
[fm — fall < o — Il + [[fn — Il <e/2+e/2 =¢.
Now, let {f,} be a Cauchy sequence in X with subsequence {f,, } which
converges to f in X. Let £ > 0. Since {f,} is Cauchy, choose N; € N such
that ||f, — fm|| < &/2 for all m,n > Njy. Since {f,, } converges to f there is
N> € N such that if ny > N, then ||f,, — f|| < £/2. So for
n > max{ Ny, N>} we have

€

£
1fo = £l = [1(fa = fa) + (e = O < [lfo — Fa [l + o, = FII < 5 + 5

So {fn} — f. O

=E€.
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Theorem 7.6

Theorem 7.6. Let E be measurable and 1 < p < co. Then every rapidly
Cauchy sequence in LP(E) converges both with respect to the LP norm
and pointwise a.e. on E to a function in LP(E).

Proof. The case p = oo is Exercise 7.33. Assume 1 < p < co. Let {f,}
be a rapidly Cauchy sequence in LP(E). Without loss of generality, each f,
is finite valued. Choose {£,}7°, as described above. Then

| fes1 — fllp < 2 and so

/E i — P <2 (%)

for k € N. Fix index k. Now for x € E, we have |fi11(x) — fi(x)| > e if
and only if |fi1(x) — fi(x)|P > €}, so by Chebychev’s Inequality (see
Section 4.3. The Lebesgue Integral of a Measurable Nonnegative
Function) we have. ..



Theorem 7.6 (continued 1)

Proof (continued). ...

m({x € E | [fip1(x)=fu(x)| Z ex}) = m({x € E | lfira(x)—fi(x)I” = £}'})

1
< —p/ [fir1 — fi|P < €f by (x).
Ek E

Since p > 1, the series Y} ; £} converges (g4 — 0, so eventually £} < g
and by the Comparison Test). By the Borel-Cantelli Lemma (see Section
2.5. Continuity and the Borel-Cantelli Lemma), since

Sorey m({x € E | |figr(x) — fi(x)| > ex}) < Dpeq el < oo, almost all

x € E belong to finitely many of the sets on the left hand side. That is,
there is set Ey C E where m(Ey) = 0, and for x € E \ Eg we have x in
finitely many of the sets on the left hand side. In other words, for each

x € E\ Ep there is an index K(x) (think of it as the index of the "last” set
containing x) such that |fi1(x) — fx(x)| < ek for all k > K(x).
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The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let E be measurable and 1 < p < oco.
Then LP(E) is a Banach space. Moreover, if {f,} — f in LP then there is
a subsequence of {f,} which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose {f,} is a Cauchy
sequence in LP. By Proposition 7.5, there is a subsequence {f,, } of {f,}
that is rapidly Cauchy. By Theorem 7.6, {f,, } converges to an f € LP(E)
both with respect to the LP norm and a.e. pointwise on E. By Proposition
7.4, {f,} converges to f with respect to the LP norm. O
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Theorem 7.6

Theorem 7.6 (continued 2)

Proof (continued). Then for all n > K(x) and all k € N we have
n+k—1

ok (x) = fa(x)] < Z [fi+1(x) = fi(x)] < Zgj-

Since Zj'il gj converges, for n sufficiently large, the right hand side of this
inequality can be made small, and so the sequence of real numbers (for
fixed x) {fk(x)} is Cauchy and therefore convergent. Define f(x) as
limp—oo fa(x) = f(x). It follows as in the proof of Theorem 7.5 that

sk — Follp < S50 22 or [glfork — fal? < (zj;ng})” for all n, k € N.
When k — o0, f,1x — f a.e. on E and so, by Fatou's Lemma,

Je imico [fosn—fl? = [ |F =P < limy o [ foss—fal? < (352,22)"
for all n € N. Therefore f — f, € LP(E) and since f, € LP(E), then

f € LP(E). The right hand side of this inequality can be made arbitrarily
small by making n sufficiently large, and so {f,} — f in LP(E). So {f,}

converges to f in LP and a.e. pointwise by the construction of f. O
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Theorem 7.7

Theorem 7.7

Theorem 7.7. Let E be measurable and 1 < p < co. Suppose {f,} is a
sequence in LP(E) that converges pointwise a.e. on E to f € LP(E). Then
{fa} — f with respect to the LP norm if and only if

mQ/mvz/vm
n—oo E E

that is || 7], — || f]l,-

Proof. Without loss of generality, we assume f and each f, is real-valued
and the convergence is pointwise on E. By Minkowski's Inequality,

[fallp = lfa = £+ Fllp < fa = Fllp + Il or [[fallp = [Ifllp < 1fa = llp.
Also [[Fllp = | = £+ fallp < Ifallo + | — ol or

—[If = fallp < Ifallp — | fllp. Therefore [[[fall, — [|f]lp] < [f = fallp. So if
{fa} — f with respect to the LP norm, then ||fy||, — ||f||p. To prove the
converse, suppose ||f,||p, — ||f]|p and {f,} — f pointwise on E.

February 1, 2023 9 /11



Theorem 7.7 (continued 1) Theorem 7.7 (continued 2)

Proof (continued). Define ¢(t) = |t|P. Then ¢ is “convex” (i.e.,
concave up since p > 1) and ¢((a + b)/2) < (¢(a) + ¢(b))/2 for all a, b.

Hence 0 < (|alP + |b|P)/2 — |(a — b)/2|P for all a, b (here, we are using Theorem.7.7. Let E be measurable'and'l < p < 0. Suppose {fp} is a
B((a+ (—b))/2) < (¥(a) + (b)) /2). Therefore, for each n, hy is sequence in LP(E) that converges pointwise a.e. on E to f € LP(E). Then
nonnegative and measurable on E where {f,} — f with respect to the LP norm if and only if
hn(x) = (|fa(X)|P + |f(x)|P)/2 — |fa(x) — f(x)|P/2P. Then h, — |f|P since _
f, — f pointwise. So by Fatou's Lemma and since ||f,|[, — ||f]lp. nleoo/‘E |fal? = /E |£17,
p p — fIP :
|f|p < liminf h,7 = liminf [fal? £ 177 1fa = f] that is || fal[p — [|f]]p.
c 2 »
I£,P 7P £, — £|P Proof (continued). Therefore limsup [ |(f, — f)/2|P <0, or
= liminf (/ ) / — limsu p(/ ) limsup [ |fo — f|P <0 or lim [ |f, — f|P = 0 (since |f, — f| nonnegative)

and therefore ||f, — f||, — 0, or {f,} — f with respect to the L norm. []

fIP P fn — fn— f|P
/| | /| | I|msup/| /|f|p—||msup/u
E 2p



