Chapter 7. The L^p Spaces: Completeness and Approximation

7.3. L^p is Complete: The Riesz-Fischer Theorem—Proofs of Theorems
<table>
<thead>
<tr>
<th></th>
<th>Proposition 7.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Proposition 7.5</td>
</tr>
<tr>
<td>3</td>
<td>Theorem 7.6</td>
</tr>
<tr>
<td>4</td>
<td>The Riesz-Fischer Theorem</td>
</tr>
<tr>
<td>5</td>
<td>Theorem 7.7</td>
</tr>
</tbody>
</table>
Proposition 7.4.

Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then

$$\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \leq \|f_n - f\| + \|f - f_m\|$$

for all $m, n \in \mathbb{N}$. Let $\epsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \epsilon/2$. Then for all $m, n > N$, we have

$$\|f_m - f_n\| \leq \|f_n - f\| + \|f_m - f\| < \epsilon/2 + \epsilon/2 = \epsilon.$$
Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then

$$\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \leq \|f_n - f\| + \|f - f_m\|$$

for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \varepsilon/2$. Then for all $m, n > N$, we have

$$\|f_m - f_n\| \leq \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $\|f_n - f_m\| < \varepsilon/2$ for all $m, n \geq N_1$. Since $\{f_{n_k}\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \geq N_2$ then $\|f_{n_k} - f\| < \varepsilon/2$.
Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then
\[
\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \leq \|f_n - f\| + \|f - f_m\| \quad \text{for all } m, n \in \mathbb{N}.
\]
Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \varepsilon/2$. Then for all $m, n > N$, we have
\[
\|f_m - f_n\| \leq \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]
Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $\|f_n - f_m\| < \varepsilon/2$ for all $m, n \geq N_1$. Since $\{f_{n_k}\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \geq N_2$ then $\|f_{n_k} - f\| < \varepsilon/2$. So for $n \geq \max\{N_1, N_2\}$ we have
\[
\|f_n - f\| = \|(f_n - f_{n_k}) + (f_{n_k} - f)\| \leq \|f_n - f_{n_k}\| + \|f_{n_k} - f\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]
So $\{f_n\} \to f$. \qed
Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then

$$\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \leq \|f_n - f\| + \|f - f_m\|$$

for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \varepsilon/2$. Then for all $m, n > N$, we have

$$\|f_m - f_n\| \leq \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $\|f_n - f_m\| < \varepsilon/2$ for all $m, n \geq N_1$. Since $\{f_{n_k}\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \geq N_2$ then $\|f_{n_k} - f\| < \varepsilon/2$. So for $n \geq \max\{N_1, N_2\}$ we have

$$\|f_n - f\| = \|(f_n - f_{n_k}) + (f_{n_k} - f)\| \leq \|f_n - f_{n_k}\| + \|f_{n_k} - f\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So $\{f_n\} \to f$.

\[\square\]
Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$
\|f_{n+k} - f_n\| = \left\| \sum_{j=n}^{n+k-1} (f_{j+1} - f_j) \right\| \leq \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \leq \sum_{j=n}^{n+k-1} \varepsilon_j^2 \leq \sum_{j=n}^{\infty} \varepsilon_j^2.
$$
Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$
\|f_{n+k} - f_n\| = \left\| \sum_{j=n}^{n+k-1} (f_{j+1} - f_j) \right\| \leq \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \leq \sum_{j=n}^{n+k-1} \varepsilon_j^2 \leq \sum_{j=n}^{\infty} \varepsilon_j^2.
$$

Since $\sum_{k=1}^{\infty} \varepsilon_k$ converges, then $\sum_{k=1}^{\infty} \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \leq \varepsilon_k$, and the Comparison Test). Therefore for n “sufficiently large,” $\sum_{j=n}^{\infty} \varepsilon_j^2$ is “small” hence $\{f_n\}$ is a Cauchy sequence.
Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$
\|f_{n+k} - f_n\| = \left\| \sum_{j=n}^{n+k-1} (f_{j+1} - f_j) \right\| \leq \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \leq \sum_{j=n}^{n+k-1} \varepsilon_j^2 \leq \sum_{j=n}^{\infty} \varepsilon_j^2.
$$

Since $\sum_{k=1}^{\infty} \varepsilon_k$ converges, then $\sum_{k=1}^{\infty} \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \leq \varepsilon_k$, and the Comparison Test). Therefore for n “sufficiently large,” $\sum_{j=n}^{\infty} \varepsilon_j^2$ is “small” hence $\{f_n\}$ is a Cauchy sequence.

Now assume $\{f_n\}$ is Cauchy in X. For any f_{n_k} we may find, by the Cauchy property, $f_{n_{k+1}}$ such that $\|f_{n_{k+1}} - f_{n_k}\| \leq (1/2)^k \equiv \varepsilon_k^2$. Then $\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} (1/\sqrt{2})^k$ converges (geometric series). So $\{f_{n_k}\}$ is rapidly Cauchy.
Proposition 7.5

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^\infty$ as described above. Then

$$
\|f_{n+k} - f_n\| = \left\| \sum_{j=n}^{n+k-1} (f_{j+1} - f_j) \right\| \leq \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \leq \sum_{j=n}^{n+k-1} \varepsilon_j \leq \sum_{j=n}^\infty \varepsilon_j.
$$

Since $\sum_{k=1}^\infty \varepsilon_k$ converges, then $\sum_{k=1}^\infty \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \leq \varepsilon_k$, and the Comparison Test). Therefore for n “sufficiently large,” $\sum_{j=n}^\infty \varepsilon_j^2$ is “small” hence $\{f_n\}$ is a Cauchy sequence.

Now assume $\{f_n\}$ is Cauchy in X. For any f_{n_k} we may find, by the Cauchy property, $f_{n_{k+1}}$ such that $\|f_{n_{k+1}} - f_{n_k}\| \leq (1/2)^k \equiv \varepsilon_k^2$. Then $\sum_{k=1}^\infty \varepsilon_k = \sum_{k=1}^\infty (1/\sqrt{2})^k$ converges (geometric series). So $\{f_{n_k}\}$ is rapidly Cauchy.

\square
Theorem 7.6. Let E be measurable and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \leq p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued.
Theorem 7.6. Let E be measurable and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \leq p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^\infty$ as described above. Then

$$\|f_{k+1} - f_k\|_p \leq \varepsilon_k^2$$

and so

$$\int_E |f_{k+1} - f_k|^p \leq \varepsilon_k^{2p} \quad (*)$$

for $k \in \mathbb{N}$. Fix index k.
Theorem 7.6. Let E be measurable and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \leq p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$\|f_{k+1} - f_k\|_p \leq \varepsilon_k^2$$

and so

$$\int_E |f_{k+1} - f_k|^p \leq \varepsilon_k^{2p} \quad (\ast)$$

for $k \in \mathbb{N}$. Fix index k. Now for $x \in E$, we have $|f_{k+1}(x) - f_k(x)| \geq \varepsilon_k$ if and only if $|f_{k+1}(x) - f_k(x)|^p \geq \varepsilon_k^p$, so by Chebychev’s Inequality (page 80) we have
Theorem 7.6. Let E be measurable and $1 \leq p \leq \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on E to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \leq p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^\infty$ as described above. Then

$$
\|f_{k+1} - f_k\|_p \leq \varepsilon_k^2 \quad \text{and so}
$$

$$
\int_E |f_{k+1} - f_k|^p \leq \varepsilon_k^{2p}
$$

for $k \in \mathbb{N}$. Fix index k. Now for $x \in E$, we have $|f_{k+1}(x) - f_k(x)| \geq \varepsilon_k$ if and only if $|f_{k+1}(x) - f_k(x)|^p \geq \varepsilon_k^p$, so by Chebychev’s Inequality (page 80) we have
Theorem 7.6 (continued 1)

Proof (continued).

\[m(\{ x \in E \mid |f_{k+1}(x) - f_k(x)| \geq \varepsilon_k \}) = m(\{ x \in E \mid |f_{k+1}(x) - f_k(x)|^p \geq \varepsilon_k^p \}) \]

\[\leq \frac{1}{\varepsilon_k^p} \int_E |f_{k+1} - f_k|^p \leq \varepsilon_k^p \text{ by } (\ast). \]

Since \(p \geq 1 \), the series \(\sum_{k=1}^{\infty} \varepsilon_k^p \) converges (\(\varepsilon_k \rightarrow 0 \), so eventually \(\varepsilon_k^p < \varepsilon_k \) and by the Comparison Test). By the Borel-Cantelli Lemma (page 46), since \(\sum_{k=1}^{\infty} m(\{ x \in E \mid |f_{k+1}(x) - f_k(x)| \geq \varepsilon_k \}) \leq \sum_{k=1}^{\infty} \varepsilon_k^p < \infty \), almost all \(x \in E \) belong to finitely many of the sets on the left hand side. That is, there is set \(E_0 \subset E \) where \(m(E_0) = 0 \), and for \(x \in E \setminus E_0 \) we have \(x \) in finitely many of the sets on the left hand side.
Theorem 7.6 (continued 1)

Proof (continued).

\[m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \geq \varepsilon_k\}) = m(\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \geq \varepsilon_k^p\}) \]

\[\leq \frac{1}{\varepsilon_k^p} \int_E |f_{k+1} - f_k|^p \leq \varepsilon_k^p \text{ by } (*) . \]

Since \(p \geq 1 \), the series \(\sum_{k=1}^{\infty} \varepsilon_k^p \) converges (\(\varepsilon_k \to 0 \), so eventually \(\varepsilon_k^p < \varepsilon_k \) and by the Comparison Test). By the Borel-Cantelli Lemma (page 46), since \(\sum_{k=1}^{\infty} m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \geq \varepsilon_k\}) \leq \sum_{k=1}^{\infty} \varepsilon_k^p < \infty \), almost all \(x \in E \) belong to finitely many of the sets on the left hand side. That is, there is set \(E_0 \subset E \) where \(m(E_0) = 0 \), and for \(x \in E \setminus E_0 \) we have \(x \) in finitely many of the sets on the left hand side. In other words, for each \(x \in E \setminus E_0 \) there is an index \(K(x) \) (think of it as the index of the “last” set containing \(x \)) such that \(|f_{k+1}(x) - f_k(x)| < \varepsilon_k \) for all \(k > K(x) \).
Proof (continued).

\[m(\{x \in E \mid \left| f_{k+1}(x) - f_k(x) \right| \geq \varepsilon_k \}) = m(\{x \in E \mid \left| f_{k+1}(x) - f_k(x) \right|^p \geq \varepsilon_k^p \}) \leq \frac{1}{\varepsilon_k^p} \int_E \left| f_{k+1} - f_k \right|^p \leq \varepsilon_k^p \text{ by } (*) . \]

Since \(p \geq 1 \), the series \(\sum_{k=1}^{\infty} \varepsilon_k^p \) converges (\(\varepsilon_k \to 0 \), so eventually \(\varepsilon_k^p < \varepsilon_k \) and by the Comparison Test). By the Borel-Cantelli Lemma (page 46), since \(\sum_{k=1}^{\infty} m(\{x \in E \mid \left| f_{k+1}(x) - f_k(x) \right| \geq \varepsilon_k \}) \leq \sum_{k=1}^{\infty} \varepsilon_k^p < \infty \), almost all \(x \in E \) belong to finitely many of the sets on the left hand side. That is, there is set \(E_0 \subset E \) where \(m(E_0) = 0 \), and for \(x \in E \setminus E_0 \) we have \(x \) in finitely many of the sets on the left hand side. In other words, for each \(x \in E \setminus E_0 \) there is an index \(K(x) \) (think of it as the index of the “last” set containing \(x \)) such that \(\left| f_{k+1}(x) - f_k(x) \right| < \varepsilon_k \) for all \(k > K(x) \).
Theorem 7.6 (continued 2)

Proof (continued). Then for all \(n \geq K(x) \) and all \(k \in \mathbb{N} \) we have

\[
|f_{n+k}(x) - f_n(x)| \leq \sum_{j=n}^{n+k-1} |f_{j+1}(x) - f_j(x)| \leq \sum_{j=n}^{\infty} \varepsilon_j.
\]

Since \(\sum_{j=1}^{\infty} \varepsilon_j \) converges, for \(n \) sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed \(x \)) \(\{f_k(x)\} \) is Cauchy and therefore convergent. Define \(f(x) \) as \(\lim_{n \to \infty} f_n(x) = f(x) \). It follows as in the proof of Theorem 7.5 that \(\|f_{n+k} - f_n\|_p \leq \sum_{j=n}^{\infty} \varepsilon_j^2 \) or \(\int_E |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2 \right)^p \) for all \(n, k \in \mathbb{N} \).

When \(k \to \infty \), \(f_{n+k} \to f \) a.e. on \(E \) and so, by Fatou’s Lemma,

\[
\int_E \lim_{k \to \infty} |f_{n+k} - f_n|^p = \int_E |f - f_n|^p \leq \lim_{k \to \infty} \int |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2 \right)^p
\]

for all \(n \in \mathbb{N} \).
Theorem 7.6 (continued 2)

Proof (continued). Then for all $n \geq K(x)$ and all $k \in \mathbb{N}$ we have

$$|f_{n+k}(x) - f_n(x)| \leq \sum_{j=n}^{n+k-1} |f_{j+1}(x) - f_j(x)| \leq \sum_{j=n}^{\infty} \varepsilon_j.$$

Since $\sum_{j=1}^{\infty} \varepsilon_j$ converges, for n sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed x) $\{f_k(x)\}$ is Cauchy and therefore convergent. Define $f(x)$ as $\lim_{n \to \infty} f_n(x) = f(x)$. It follows as in the proof of Theorem 7.5 that

$$\|f_{n+k} - f_n\|_p \leq \sum_{j=n}^{\infty} \varepsilon_j^2$$

or

$$\int_E |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2\right)^p$$

for all $n, k \in \mathbb{N}$. When $k \to \infty$, $f_{n+k} \to f$ a.e. on E and so, by Fatou’s Lemma,

$$\int_E \lim_{k \to \infty} |f_{n+k} - f_n|^p = \int_E |f - f_n|^p \leq \lim_{k \to \infty} \int |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2\right)^p$$

for all $n \in \mathbb{N}$. Therefore $f - f_n \in L^p(E)$ and since $f_n \in L^p(E)$, then $f \in L^p(E)$. The right hand side of this inequality can be made arbitrarily small by making n sufficiently large, and so $\{f_n\} \to f$ in $L^p(E)$. So $\{f_n\}$ converges to f in L^p and a.e. pointwise by the construction of f. \qed
Theorem 7.6 (continued 2)

Proof (continued). Then for all \(n \geq K(x) \) and all \(k \in \mathbb{N} \) we have

\[
|f_{n+k}(x) - f_n(x)| \leq \sum_{j=n}^{n+k-1} |f_{j+1}(x) - f_j(x)| \leq \sum_{j=n}^{\infty} \varepsilon_j.
\]

Since \(\sum_{j=1}^{\infty} \varepsilon_j \) converges, for \(n \) sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed \(x \)) \(\{f_k(x)\} \) is Cauchy and therefore convergent. Define \(f(x) \) as

\[
\lim_{n \to \infty} f_n(x) = f(x).
\]

It follows as in the proof of Theorem 7.5 that

\[
\|f_{n+k} - f_n\|_p \leq \sum_{j=n}^{\infty} \varepsilon_j^2 \quad \text{or} \quad \int_E |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2 \right)^p
\]

for all \(n, k \in \mathbb{N} \).

When \(k \to \infty \), \(f_{n+k} \to f \) a.e. on \(E \) and so, by Fatou’s Lemma,

\[
\int_E \lim_{k \to \infty} |f_{n+k} - f_n|^p = \int_E |f - f_n|^p \leq \lim_{k \to \infty} \int |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2 \right)^p
\]

for all \(n \in \mathbb{N} \). Therefore \(f - f_n \in L^p(E) \) and since \(f_n \in L^p(E) \), then \(f \in L^p(E) \). The right hand side of this inequality can be made arbitrarily small by making \(n \) sufficiently large, and so \(\{f_n\} \to f \) in \(L^p(E) \). So \(\{f_n\} \) converges to \(f \) in \(L^p \) and a.e. pointwise by the construction of \(f \). \(\square \)
The Riesz-Fischer Theorem. Let E be measurable and $1 \leq p \leq \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p. By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy.
The Riesz-Fischer Theorem. Let E be measurable and $1 \leq p \leq \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p. By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy. By Theorem 7.6, $\{f_{n_k}\}$ converges to an $f \in L^p(E)$ both with respect to the L^p norm and a.e. pointwise on E. By Proposition 7.4, $\{f_n\}$ converges to f with respect to the L^p norm.
The Riesz-Fischer Theorem. Let E be measurable and $1 \leq p \leq \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on E to f.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p. By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy. By Theorem 7.6, $\{f_{n_k}\}$ converges to an $f \in L^p(E)$ both with respect to the L^p norm and a.e. pointwise on E. By Proposition 7.4, $\{f_n\}$ converges to f with respect to the L^p norm. □
Theorem 7.7. Let E be measurable and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p,$$

that is $\|f_n\|_p \to \|f\|_p$.

Proof. Without loss of generality, we assume f and each f_n is real-valued and the convergence is pointwise on E. By Minkowski’s Inequality,

$$\|f_n\|_p = \|f_n - f + f\|_p \leq \|f_n - f\|_p + \|f\|_p,$$

or $\|f_n\|_p - \|f\|_p \leq \|f_n - f\|_p$. Also $\|f\|_p = \|f - f_n + f_n\|_p \leq \|f_n\|_p + \|f - f_n\|_p$ or $-\|f - f_n\|_p \leq \|f_n\|_p - \|f\|_p$. Therefore $\|f_n\|_p - \|f\|_p \leq \|f - f_n\|_p$. So if $\{f_n\} \to f$ with respect to the L^p norm, then $\|f_n\|_p \to \|f\|_p$. To prove the converse, suppose $\|f_n\|_p \to \|f\|_p$ and $\{f_n\} \to f$ pointwise on E.
Theorem 7.7

Theorem 7.7. Let E be measurable and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p,$$

that is $\|f_n\|_p \to \|f\|_p$.

Proof. Without loss of generality, we assume f and each f_n is real-valued and the convergence is pointwise on E. By Minkowski’s Inequality,

$$\|f_n\|_p = \|f_n - f + f\|_p \leq \|f_n - f\|_p + \|f\|_p,$$ or $\|f_n\|_p - \|f\|_p \leq \|f_n - f\|_p$.

Also $\|f\|_p = \|f - f_n + f_n\|_p \leq \|f_n\|_p + \|f - f_n\|_p$ or $-\|f - f_n\|_p \leq \|f_n\|_p - \|f\|_p$. Therefore $\|f_n\|_p - \|f\|_p \leq \|f - f_n\|_p$. So if $\{f_n\} \to f$ with respect to the L^p norm, then $\|f_n\|_p \to \|f\|_p$. To prove the converse, suppose $\|f_n\|_p \to \|f\|_p$ and $\{f_n\} \to f$ pointwise on E.

Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is “convex” (i.e., concave up since $p \geq 1$) and $\psi((a + b)/2) \leq (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \leq (|a|^p + |b|^p)/2 - |(a - b)/2|^p$ for all a, b (here, we are using $\psi((a + (-b))/2) \leq (\psi(a) + \psi(-b))/2$). Therefore, for each n, h_n is nonnegative and measurable on E where $h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p$. Then $h_n \to |f|^p$ since $f_n \to f$ pointwise.
Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is “convex” (i.e., concave up since $p \geq 1$) and $\psi((a + b)/2) \leq (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \leq (|a|^p + |b|^p)/2 - |(a - b)/2|^p$ for all a, b (here, we are using $\psi((a + (-b))/2) \leq (\psi(a) + \psi(-b))/2$). Therefore, for each n, h_n is nonnegative and measurable on E where

$$h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p.$$

Then $h_n \rightarrow |f|^p$ since $f_n \rightarrow f$ pointwise. So by Fatou’s Lemma and since $\|f_n\|_p \rightarrow \|f\|_p$,

$$\int_E |f|^p \leq \lim inf \int_E h_n = \lim inf \int_E \left(\frac{|f_n|^p + |f|^p}{2} - \frac{|f_n - f|^p}{2^p}\right)$$

$$= \lim inf \left(\int_E \frac{|f_n|^p}{2}\right) + \int_E \frac{|f|^p}{2} - \lim sup \left(\int_E \frac{|f_n - f|^p}{2^p}\right)$$

$$= \int_E \frac{|f|^p}{2} + \int_E \frac{|f|^p}{2} - \lim sup \int_E \frac{|f_n - f|^p}{2^p} = \int_E |f|^p - \lim sup \int_E \frac{|f_n - f|^p}{2^p}.$$
Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is “convex” (i.e., concave up since $p \geq 1$) and $\psi((a + b)/2) \leq (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \leq (|a|^p + |b|^p)/2 - |(a - b)/2|^p$ for all a, b (here, we are using $\psi((a + (-b))/2) \leq (\psi(a) + \psi(-b))/2$). Therefore, for each n, h_n is nonnegative and measurable on E where

$$h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p.$$

Then $h_n \to |f|^p$ since $f_n \to f$ pointwise. So by Fatou’s Lemma and since $\|f_n\|_p \to \|f\|_p$,

$$\int_E |f|^p \leq \liminf \int_E h_n = \liminf \int_E \left(\frac{|f_n|^p + |f|^p}{2} - \frac{|f_n - f|^p}{2^p} \right)$$

$$= \liminf \left(\int_E \frac{|f_n|^p}{2} \right) + \int_E \frac{|f|^p}{2} - \limsup \left(\int_E \frac{|f_n - f|^p}{2^p} \right)$$

$$= \int_E \frac{|f|^p}{2} + \int_E \frac{|f|^p}{2} - \limsup \int_E \frac{|f_n - f|^p}{2^p} = \int_E |f|^p - \limsup \int_E \frac{|f_n - f|^p}{2^p}.$$
Theorem 7.7. Let E be measurable and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n \to \infty} \int_E |f_n|^p = \int_E |f|^p,$$

that is $\|f_n\|_p \to \|f\|_p$.

Proof (continued). Therefore $\limsup \int_E |(f_n - f)/2|^p \leq 0$, or $\limsup \int_E |f_n - f|^p \leq 0$ or $\lim \int_E |f_n - f|^p = 0$ (since $|f_n - f|$ nonnegative) and therefore $\|f_n - f\|_p \to 0$, or $\{f_n\} \to f$ with respect to the L^p norm. \qed