Real Analysis

Chapter 7. The *L*^{*p*} **Spaces: Completeness and Approximation** 7.3. *L*^{*p*} is Complete: The Riesz-Fischer Theorem—Proofs of Theorems

Real Analysis

- Proposition 7.5
- 3 Theorem 7.6
- 4 The Riesz-Fischer Theorem
- 5 Theorem 7.7

Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then $\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \le \|f_n - f\| + \|f - f_m\|$ for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \varepsilon/2$. Then for all m, n > N, we have $\|f_m - f_n\| \le \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then

 $\|f_n - f_m\| = \|(f_n - f) + (f - f_m)\| \le \|f_n - f\| + \|f - f_m\|$ for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $\|f_n - f\| < \varepsilon/2$. Then for all m, n > N, we have $\|f_m - f_n\| \le \|f_n - f\| + \|f_m - f\| \le \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $||f_n - f_m|| < \varepsilon/2$ for all $m, n \ge N_1$. Since $\{f_{n_k}\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \ge N_2$ then $||f_{n_k} - f|| < \varepsilon/2$.

Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then $||f_n - f_m|| = ||(f_n - f) + (f - f_m)|| \le ||f_n - f|| + ||f - f_m||$ for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $||f_n - f|| < \varepsilon/2$. Then for all m, n > N, we have $\|f_m - f_n\| < \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$ Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $||f_n - f_m|| < \varepsilon/2$ for all $m, n \ge N_1$. Since $\{f_n\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \geq N_2$ then $||f_{n_k} - f|| < \varepsilon/2$. So for $n > \max\{N_1, N_2\}$ we have

$$\|f_n - f\| = \|(f_n - f_{n_k}) + (f_{n_k} - f)\| \le \|f_n - f_{n_k}\| + \|f_{n_k} - f\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So $\{f_n\} \to f.$

Proposition 7.4. Let X be a normed linear space. Then every convergent sequence in X is Cauchy. Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof. Let $\{f_n\} \to f$ in X. Then $||f_n - f_m|| = ||(f_n - f) + (f - f_m)|| \le ||f_n - f|| + ||f - f_m||$ for all $m, n \in \mathbb{N}$. Let $\varepsilon > 0$ and $N \in \mathbb{N}$ such that for all values of the index greater than N, we have $||f_n - f|| < \varepsilon/2$. Then for all m, n > N, we have $\|f_m - f_n\| < \|f_n - f\| + \|f_m - f\| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$ Now, let $\{f_n\}$ be a Cauchy sequence in X with subsequence $\{f_{n_k}\}$ which converges to f in X. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, choose $N_1 \in \mathbb{N}$ such that $||f_n - f_m|| < \varepsilon/2$ for all $m, n \ge N_1$. Since $\{f_{n_k}\}$ converges to f there is $N_2 \in \mathbb{N}$ such that if $n_k \geq N_2$ then $||f_{n_k} - f|| < \varepsilon/2$. So for $n > \max\{N_1, N_2\}$ we have

$$\|f_n - f\| = \|(f_n - f_{n_k}) + (f_{n_k} - f)\| \le \|f_n - f_{n_k}\| + \|f_{n_k} - f\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

So $\{f_n\} \to f.$

February 1, 2023

3 / 11

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$\|f_{n+k} - f_n\| = \left\|\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)\right\| \le \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \le \sum_{j=n}^{n+k-1} \varepsilon_j^2 \le \sum_{j=n}^{\infty} \varepsilon_j^2.$$

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$\|f_{n+k} - f_n\| = \left\|\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)\right\| \le \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \le \sum_{j=n}^{n+k-1} \varepsilon_j^2 \le \sum_{j=n}^{\infty} \varepsilon_j^2.$$

Since $\sum_{k=1}^{\infty} \varepsilon_k$ converges, then $\sum_{k=1}^{\infty} \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \le \varepsilon_k$, and the Comparison Test). Therefore for *n* "sufficiently large," $\sum_{i=n}^{\infty} \varepsilon_i^2$ is "small" hence $\{f_n\}$ is a Cauchy sequence.

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$\|f_{n+k} - f_n\| = \left\|\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)\right\| \le \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \le \sum_{j=n}^{n+k-1} \varepsilon_j^2 \le \sum_{j=n}^{\infty} \varepsilon_j^2.$$

Since $\sum_{k=1}^{\infty} \varepsilon_k$ converges, then $\sum_{k=1}^{\infty} \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \leq \varepsilon_k$, and the Comparison Test). Therefore for *n* "sufficiently large," $\sum_{i=n}^{\infty} \varepsilon_i^2$ is "small" hence $\{f_n\}$ is a Cauchy sequence.

Now assume $\{f_n\}$ is Cauchy in X. For any f_{n_k} we may find, by the Cauchy property, $f_{n_{k+1}}$ such that $||f_{n_{k+1}} - f_{n_k}|| \le (1/2)^k \equiv \varepsilon_k^2$. Then $\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} (1/\sqrt{2})^k$ converges (geometric series). So $\{f_{n_k}\}$ is rapidly Cauchy.

Proposition 7.5. Let X be a normed linear space. Then every rapidly Cauchy sequence in X is Cauchy. Furthermore every Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let $\{f_n\}$ be rapidly Cauchy in X with $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then

$$\|f_{n+k} - f_n\| = \left\|\sum_{j=n}^{n+k-1} (f_{j+1} - f_j)\right\| \le \sum_{j=n}^{n+k-1} \|f_{j+1} - f_j\| \le \sum_{j=n}^{n+k-1} \varepsilon_j^2 \le \sum_{j=n}^{\infty} \varepsilon_j^2.$$

Since $\sum_{k=1}^{\infty} \varepsilon_k$ converges, then $\sum_{k=1}^{\infty} \varepsilon_k^2$ converges ($\varepsilon_k \to 0$, eventually $\varepsilon_k^2 \leq \varepsilon_k$, and the Comparison Test). Therefore for *n* "sufficiently large," $\sum_{i=n}^{\infty} \varepsilon_i^2$ is "small" hence $\{f_n\}$ is a Cauchy sequence.

Now assume $\{f_n\}$ is Cauchy in X. For any f_{n_k} we may find, by the Cauchy property, $f_{n_{k+1}}$ such that $||f_{n_{k+1}} - f_{n_k}|| \le (1/2)^k \equiv \varepsilon_k^2$. Then $\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} (1/\sqrt{2})^k$ converges (geometric series). So $\{f_{n_k}\}$ is rapidly Cauchy.

Theorem 7.6. Let *E* be measurable and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on *E* to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \le p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued.

Theorem 7.6. Let *E* be measurable and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on *E* to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \le p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then $\|f_{k+1} - f_k\|_p \le \varepsilon_k^2$ and so

$$\int_{E} |f_{k+1} - f_k|^p \le \varepsilon_k^{2p} \qquad (*)$$

for $k \in \mathbb{N}$. Fix index k.

Theorem 7.6. Let *E* be measurable and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on *E* to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \le p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then $\|f_{k+1} - f_k\|_p \le \varepsilon_k^2$ and so

$$\int_{E} |f_{k+1} - f_k|^p \le \varepsilon_k^{2p} \qquad (*)$$

for $k \in \mathbb{N}$. Fix index k. Now for $x \in E$, we have $|f_{k+1}(x) - f_k(x)| \ge \varepsilon_k$ if and only if $|f_{k+1}(x) - f_k(x)|^p \ge \varepsilon_k^p$, so by Chebychev's Inequality (see Section 4.3. The Lebesgue Integral of a Measurable Nonnegative Function) we have...

Theorem 7.6. Let *E* be measurable and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(E)$ converges both with respect to the L^p norm and pointwise a.e. on *E* to a function in $L^p(E)$.

Proof. The case $p = \infty$ is Exercise 7.33. Assume $1 \le p < \infty$. Let $\{f_n\}$ be a rapidly Cauchy sequence in $L^p(E)$. Without loss of generality, each f_n is finite valued. Choose $\{\varepsilon_k\}_{k=1}^{\infty}$ as described above. Then $\|f_{k+1} - f_k\|_p \le \varepsilon_k^2$ and so

$$\int_{E} |f_{k+1} - f_k|^p \le \varepsilon_k^{2p} \qquad (*)$$

for $k \in \mathbb{N}$. Fix index k. Now for $x \in E$, we have $|f_{k+1}(x) - f_k(x)| \ge \varepsilon_k$ if and only if $|f_{k+1}(x) - f_k(x)|^p \ge \varepsilon_k^p$, so by Chebychev's Inequality (see Section 4.3. The Lebesgue Integral of a Measurable Nonnegative Function) we have...

Theorem 7.6 (continued 1)

Proof (continued). ...

 $m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) = m(\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \ge \varepsilon_k^p\})$

$$\leq rac{1}{arepsilon_k^p} \int_E |f_{k+1} - f_k|^p \leq arepsilon_k^p ext{ by (*).}$$

Since $p \ge 1$, the series $\sum_{k=1}^{\infty} \varepsilon_k^p$ converges ($\varepsilon_k \to 0$, so eventually $\varepsilon_k^p < \varepsilon_k$ and by the Comparison Test). By the Borel-Cantelli Lemma (see Section 2.5. Continuity and the Borel-Cantelli Lemma), since $\sum_{k=1}^{\infty} m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) \le \sum_{k=1}^{\infty} \varepsilon_k^p < \infty$, almost all $x \in E$ belong to finitely many of the sets on the left hand side. That is, there is set $E_0 \subset E$ where $m(E_0) = 0$, and for $x \in E \setminus E_0$ we have x in finitely many of the sets on the left hand side.

Theorem 7.6 (continued 1)

Proof (continued). ...

 $m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) = m(\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \ge \varepsilon_k^p\})$

$$\leq rac{1}{arepsilon_k^p} \int_E |f_{k+1} - f_k|^p \leq arepsilon_k^p ext{ by } (*).$$

Since $p \ge 1$, the series $\sum_{k=1}^{\infty} \varepsilon_k^p$ converges ($\varepsilon_k \to 0$, so eventually $\varepsilon_k^p < \varepsilon_k$ and by the Comparison Test). By the Borel-Cantelli Lemma (see Section 2.5. Continuity and the Borel-Cantelli Lemma), since $\sum_{k=1}^{\infty} m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) \le \sum_{k=1}^{\infty} \varepsilon_k^p < \infty$, almost all $x \in E$ belong to finitely many of the sets on the left hand side. That is, there is set $E_0 \subset E$ where $m(E_0) = 0$, and for $x \in E \setminus E_0$ we have x in finitely many of the sets on the left hand side. In other words, for each $x \in E \setminus E_0$ there is an index K(x) (think of it as the index of the "last" set containing x) such that $|f_{k+1}(x) - f_k(x)| < \varepsilon_k$ for all k > K(x).

Theorem 7.6 (continued 1)

Proof (continued). ...

 $m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) = m(\{x \in E \mid |f_{k+1}(x) - f_k(x)|^p \ge \varepsilon_k^p\})$

$$\leq rac{1}{arepsilon_k^p} \int_E |f_{k+1} - f_k|^p \leq arepsilon_k^p ext{ by (*)}.$$

Since $p \ge 1$, the series $\sum_{k=1}^{\infty} \varepsilon_k^p$ converges $(\varepsilon_k \to 0)$, so eventually $\varepsilon_k^p < \varepsilon_k$ and by the Comparison Test). By the Borel-Cantelli Lemma (see Section 2.5. Continuity and the Borel-Cantelli Lemma), since $\sum_{k=1}^{\infty} m(\{x \in E \mid |f_{k+1}(x) - f_k(x)| \ge \varepsilon_k\}) \le \sum_{k=1}^{\infty} \varepsilon_k^p < \infty$, almost all $x \in E$ belong to finitely many of the sets on the left hand side. That is, there is set $E_0 \subset E$ where $m(E_0) = 0$, and for $x \in E \setminus E_0$ we have x in finitely many of the sets on the left hand side. In other words, for each $x \in E \setminus E_0$ there is an index K(x) (think of it as the index of the "last" set containing x) such that $|f_{k+1}(x) - f_k(x)| < \varepsilon_k$ for all k > K(x).

Theorem 7.6 (continued 2)

Proof (continued). Then for all $n \ge K(x)$ and all $k \in \mathbb{N}$ we have

$$|f_{n+k}(x)-f_n(x)|\leq \sum_{j=n}^{n+k-1}|f_{j+1}(x)-f_j(x)|\leq \sum_{j=n}^{\infty}\varepsilon_j.$$

Since $\sum_{j=1}^{\infty} \varepsilon_j$ converges, for *n* sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed *x*) {*f_k(x)*} is Cauchy and therefore convergent. Define *f(x)* as $\lim_{n\to\infty} f_n(x) = f(x)$. It follows as in the proof of Theorem 7.5 that $||f_{n+k} - f_n||_p \leq \sum_{j=n}^{\infty} \varepsilon_j^2$ or $\int_E |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2\right)^p$ for all $n, k \in \mathbb{N}$. When $k \to \infty$, $f_{n+k} \to f$ a.e. on *E* and so, by Fatou's Lemma, $\int_E \lim_{k\to\infty} |f_{n+k} - f_n|^p = \int_E |f - f_n|^p \leq \lim_{k\to\infty} \int |f_{n+k} - f_n|^p \leq \left(\sum_{j=n}^{\infty} \varepsilon_j^2\right)^p$ for all $n \in \mathbb{N}$.

Theorem 7.6 (continued 2)

Proof (continued). Then for all $n \ge K(x)$ and all $k \in \mathbb{N}$ we have

$$|f_{n+k}(x)-f_n(x)|\leq \sum_{j=n}^{n+k-1}|f_{j+1}(x)-f_j(x)|\leq \sum_{j=n}^{\infty}\varepsilon_j.$$

Since $\sum_{i=1}^{\infty} \varepsilon_i$ converges, for *n* sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed x) $\{f_k(x)\}$ is Cauchy and therefore convergent. Define f(x) as $\lim_{n\to\infty} f_n(x) = f(x)$. It follows as in the proof of Theorem 7.5 that $\|f_{n+k} - f_n\|_p \le \sum_{i=n}^{\infty} \varepsilon_i^2$ or $\int_E |f_{n+k} - f_n|^p \le \left(\sum_{i=n}^{\infty} \varepsilon_i^2\right)^p$ for all $n, k \in \mathbb{N}$. When $k \to \infty$, $f_{n+k} \to f$ a.e. on *E* and so, by Fatou's Lemma, $\int_{E} \lim_{k \to \infty} |f_{n+k} - f_n|^p = \int_{E} |f - f_n|^p \le \underline{\lim}_{k \to \infty} \int |f_{n+k} - f_n|^p \le \left(\sum_{j=n}^{\infty} \varepsilon_j^2\right)^p$ for all $n \in \mathbb{N}$. Therefore $f - f_n \in L^p(E)$ and since $f_n \in L^p(E)$, then $f \in L^{p}(E)$. The right hand side of this inequality can be made arbitrarily small by making *n* sufficiently large, and so $\{f_n\} \rightarrow f$ in $L^p(E)$. So $\{f_n\}$ converges to f in L^p and a.e. pointwise by the construction of f.

()

Theorem 7.6 (continued 2)

Proof (continued). Then for all $n \ge K(x)$ and all $k \in \mathbb{N}$ we have

$$|f_{n+k}(x)-f_n(x)|\leq \sum_{j=n}^{n+k-1}|f_{j+1}(x)-f_j(x)|\leq \sum_{j=n}^{\infty}\varepsilon_j.$$

Since $\sum_{i=1}^{\infty} \varepsilon_i$ converges, for *n* sufficiently large, the right hand side of this inequality can be made small, and so the sequence of real numbers (for fixed x) $\{f_k(x)\}$ is Cauchy and therefore convergent. Define f(x) as $\lim_{n\to\infty} f_n(x) = f(x)$. It follows as in the proof of Theorem 7.5 that $\|f_{n+k} - f_n\|_p \le \sum_{i=n}^{\infty} \varepsilon_i^2$ or $\int_E |f_{n+k} - f_n|^p \le \left(\sum_{i=n}^{\infty} \varepsilon_i^2\right)^p$ for all $n, k \in \mathbb{N}$. When $k \to \infty$, $f_{n+k} \to f$ a.e. on E and so, by Fatou's Lemma, $\int_{E} \lim_{k \to \infty} |f_{n+k} - f_n|^p = \int_{E} |f - f_n|^p \le \underline{\lim}_{k \to \infty} \int |f_{n+k} - f_n|^p \le \left(\sum_{i=n}^{\infty} \varepsilon_i^2\right)^p$ for all $n \in \mathbb{N}$. Therefore $f - f_n \in L^p(E)$ and since $f_n \in L^p(E)$, then $f \in L^{p}(E)$. The right hand side of this inequality can be made arbitrarily small by making *n* sufficiently large, and so $\{f_n\} \to f$ in $L^p(E)$. So $\{f_n\}$ converges to f in L^p and a.e. pointwise by the construction of f.

The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let *E* be measurable and $1 \le p \le \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on *E* to *f*.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p . By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy.

The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let *E* be measurable and $1 \le p \le \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on *E* to *f*.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p . By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy. By Theorem 7.6, $\{f_{n_k}\}$ converges to an $f \in L^p(E)$ both with respect to the L^p norm and a.e. pointwise on E. By Proposition 7.4, $\{f_n\}$ converges to f with respect to the L^p norm.

The Riesz-Fischer Theorem

The Riesz-Fischer Theorem. Let *E* be measurable and $1 \le p \le \infty$. Then $L^p(E)$ is a Banach space. Moreover, if $\{f_n\} \to f$ in L^p then there is a subsequence of $\{f_n\}$ which converges pointwise a.e. on *E* to *f*.

Proof. We need to show completeness. Suppose $\{f_n\}$ is a Cauchy sequence in L^p . By Proposition 7.5, there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ that is rapidly Cauchy. By Theorem 7.6, $\{f_{n_k}\}$ converges to an $f \in L^p(E)$ both with respect to the L^p norm and a.e. pointwise on E. By Proposition 7.4, $\{f_n\}$ converges to f with respect to the L^p norm.

Theorem 7.7. Let *E* be measurable and $1 \le p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on *E* to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n\to\infty}\int_E |f_n|^p = \int_E |f|^p,$$

that is $||f_n||_p \rightarrow ||f||_p$.

Proof. Without loss of generality, we assume f and each f_n is real-valued and the convergence is pointwise on E. By Minkowski's Inequality, $||f_n||_p = ||f_n - f + f||_p \le ||f_n - f||_p + ||f||_p$, or $||f_n||_p - ||f||_p \le ||f_n - f||_p$. Also $||f||_p = ||f - f_n + f_n||_p \le ||f_n||_p + ||f - f_n||_p$ or $-||f - f_n||_p \le ||f_n||_p - ||f||_p$. Therefore $|||f_n||_p - ||f||_p| \le ||f - f_n||_p$. So if $\{f_n\} \to f$ with respect to the L^p norm, then $||f_n||_p \to ||f||_p$. To prove the converse, suppose $||f_n||_p \to ||f||_p$ and $\{f_n\} \to f$ pointwise on E.

Theorem 7.7. Let *E* be measurable and $1 \le p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on *E* to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n\to\infty}\int_E |f_n|^p = \int_E |f|^p,$$

that is $||f_n||_p \rightarrow ||f||_p$.

Proof. Without loss of generality, we assume f and each f_n is real-valued and the convergence is pointwise on E. By Minkowski's Inequality, $||f_n||_p = ||f_n - f + f||_p \le ||f_n - f||_p + ||f||_p$, or $||f_n||_p - ||f||_p \le ||f_n - f||_p$. Also $||f||_p = ||f - f_n + f_n||_p \le ||f_n||_p + ||f - f_n||_p$ or $-||f - f_n||_p \le ||f_n||_p - ||f||_p$. Therefore $|||f_n||_p - ||f||_p| \le ||f - f_n||_p$. So if $\{f_n\} \to f$ with respect to the L^p norm, then $||f_n||_p \to ||f||_p$. To prove the converse, suppose $||f_n||_p \to ||f||_p$ and $\{f_n\} \to f$ pointwise on E.

Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is "convex" (i.e., concave up since $p \ge 1$) and $\psi((a+b)/2) \le (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \le (|a|^p + |b|^p)/2 - |(a-b)/2|^p$ for all a, b (here, we are using $\psi((a+(-b))/2) \le (\psi(a) + \psi(-b))/2)$. Therefore, for each n, h_n is nonnegative and measurable on E where $h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p$. Then $h_n \to |f|^p$ since $f_n \to f$ pointwise.

Real Analysis

Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is "convex" (i.e., concave up since $p \ge 1$) and $\psi((a+b)/2) \le (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \le (|a|^p + |b|^p)/2 - |(a-b)/2|^p$ for all a, b (here, we are using $\psi((a+(-b))/2) \le (\psi(a) + \psi(-b))/2)$. Therefore, for each n, h_n is nonnegative and measurable on E where $h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p$. Then $h_n \to |f|^p$ since $f_n \to f$ pointwise. So by Fatou's Lemma and since $||f_n||_p \to ||f||_p$,

$$\int_{E} |f|^{p} \leq \liminf \int_{E} h_{n} = \liminf \int_{E} \left(\frac{|f_{n}|^{p} + |f|^{p}}{2} - \frac{|f_{n} - f|^{p}}{2^{p}} \right)$$

 $= \liminf\left(\int_E \frac{|f_n|^p}{2}\right) + \int_E \frac{|f|^p}{2} - \limsup\left(\int_E \frac{|f_n - f|^p}{2^p}\right)$

 $= \int_{E} \frac{|f|^{p}}{2} + \int_{E} \frac{|f|^{p}}{2} - \limsup \int_{E} \frac{|f_{n} - f|^{p}}{2^{p}} = \int_{E} |f|^{p} - \limsup \int_{E} \frac{|f_{n} - f|^{p}}{2^{p}}.$

Theorem 7.7 (continued 1)

Proof (continued). Define $\psi(t) = |t|^p$. Then ψ is "convex" (i.e., concave up since $p \ge 1$) and $\psi((a+b)/2) \le (\psi(a) + \psi(b))/2$ for all a, b. Hence $0 \le (|a|^p + |b|^p)/2 - |(a-b)/2|^p$ for all a, b (here, we are using $\psi((a+(-b))/2) \le (\psi(a) + \psi(-b))/2)$. Therefore, for each n, h_n is nonnegative and measurable on E where $h_n(x) = (|f_n(x)|^p + |f(x)|^p)/2 - |f_n(x) - f(x)|^p/2^p$. Then $h_n \to |f|^p$ since $f_n \to f$ pointwise. So by Fatou's Lemma and since $||f_n||_p \to ||f||_p$,

$$\int_{E} |f|^{p} \leq \liminf \int_{E} h_{n} = \liminf \int_{E} \left(\frac{|f_{n}|^{p} + |f|^{p}}{2} - \frac{|f_{n} - f|^{p}}{2^{p}} \right)$$

$$= \liminf\left(\int_E \frac{|f_n|^p}{2}\right) + \int_E \frac{|f|^p}{2} - \limsup\left(\int_E \frac{|f_n - f|^p}{2^p}\right)$$

$$= \int_{E} \frac{|f|^{p}}{2} + \int_{E} \frac{|f|^{p}}{2} - \limsup \int_{E} \frac{|f_{n} - f|^{p}}{2^{p}} = \int_{E} |f|^{p} - \limsup \int_{E} \frac{|f_{n} - f|^{p}}{2^{p}}.$$

Theorem 7.7 (continued 2)

Theorem 7.7. Let *E* be measurable and $1 \le p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on *E* to $f \in L^p(E)$. Then $\{f_n\} \to f$ with respect to the L^p norm if and only if

$$\lim_{n\to\infty}\int_E |f_n|^p = \int_E |f|^p,$$

that is $||f_n||_p \rightarrow ||f||_p$.

Proof (continued). Therefore $\limsup \int_E |(f_n - f)/2|^p \le 0$, or $\limsup \int_E |f_n - f|^p \le 0$ or $\lim \int_E |f_n - f|^p = 0$ (since $|f_n - f|$ nonnegative) and therefore $||f_n - f||_p \to 0$, or $\{f_n\} \to f$ with respect to the L^p norm.