Proposition 7.9

Proposition 7.9. Let *E* be measurable and $1 \le p \le \infty$. Then the subspace of simple functions in $L^p(E)$ is dense in $L^p(E)$.

Proof. Let $g \in L^p(E)$. Suppose $p = \infty$. Then g is bounded on $E \setminus E_0$ where $m(E_0) = 0$. We infer from the Simple Approximation Lemma (see page 61; really, it is Problem 3.12) that there is a sequence of simple functions on $E \setminus E_0$ that converges uniformly on $E \setminus E_0$ to g, and therefore converges with respect to the L^{∞} norm. So simple functions are dense in $L^{\infty}(E)$.

Now suppose $1 \le p < \infty$. Since g is measurable, by the Simple Approximation Theorem, there is a sequence $\{\varphi_n\}$ of simple functions on *E* such that $\{\varphi_n\} \to g$ pointwise on *E* and $|\varphi_n| \le |g|$ on *E* for all $n \in \mathbb{N}$. By the Integral Comparison Test, each $\varphi_n \in L^p(E)$.

Real Analysis

February 18, 2023

February 18, 2023

Proposition 7.10

Proposition 7.10. Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Then the subspace of step functions on [a, b] is dense in $L^{p}([a,b]).$

Proof. By Proposition 7.9, simple functions are dense in $L^p([a,b])$, so we only need to show that step functions are dense in the simple functions with respect to the L^p norm. Each simple function is a linear combination of characteristic functions on measurable sets. Therefore, if each such characteristic function can be arbitrarily closely approximated by a step function with respect to the L^p norm then, since a linear combination of step functions are step functions, any simple function can also be approximated arbitrarily closely with respect to the L^p norm by a step function.

Real Analysis

Chapter 7. The L^p Spaces: Completeness and Approximation 7.4. Approximation and Separability—Proofs of Theorems

February 18, 2023

Proposition 7.9 (continued)

Proposition 7.9. Let *E* be measurable and $1 \le p \le \infty$. Then the subspace of simple functions in $L^p(E)$ is dense in $L^p(E)$.

Proof (continued). Since $\varphi(t) = t^p$ is convex for $p \ge 1$, then for all $n\in\mathbb{N}$ we have $|\varphi_n-g|^p\leq 2^p\{|\varphi_n|^p+|g|^p\}\leq 2^{p+1}|g|^p$ on E. Since $|g|^p$ is integrable over E (i.e., $\int_{E} |g|^{p} < \infty$), by the Lebesgue Dominated Convergence Theorem

$$\|\varphi_n - g\|_p^p = \int_E |\varphi_n - g|^p \to \int_E |g - g|^p = 0$$

and so $\{\varphi_n\} \to g$ with respect to the L^p norm and simple functions are dense in $L^p(E)$ (by Exercise 7.36, say).

> February 18, 2023 Real Analysis

Proposition 7.10 (cont.)

Proposition 7.10. Let [a, b] be a closed, bounded interval and $1 \le p < \infty$. Then the subspace of step functions on [a, b] is dense in $L^p([a, b])$.

Proof (continued). Let $g=\chi_A$ where $A\subset [a,b]$ is measurable and let $\varepsilon>0$. By Theorem 2.12, there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^n$ for which, with $\mathcal{U}=\cup_{k=1}^nI_k$, the symmetric difference $A\triangle\mathcal{U}=(A\setminus\mathcal{U})\cup(\mathcal{U}\setminus A)$ satisfies $m(A\triangle\mathcal{U})<\varepsilon^p$. Since \mathcal{U} is a finite disjoint union of open intervals, then $\chi_{\mathcal{U}}$ is a step function. Moreover,

$$\|\chi_{A} - \chi_{\mathcal{U}}\|_{p} = \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}|^{p} \right\}^{1/p} = \left\{ \int_{[a,b]} |\chi_{A} - \chi_{\mathcal{U}}| \right\}^{1/p}$$

$$\leq \left\{ \int_{A \wedge \mathcal{U}} 1 \right\}^{1/p} = (m(A \triangle \mathcal{U}))^{1/p} < (\varepsilon^{p})^{1/p} = \varepsilon.$$

So step function $\chi_{\mathcal{U}}$ approximates characteristic function χ_{A} to within $\varepsilon > 0$ with respect to the L^{p} norm, and the result follows.

Theorem 7.11 (cont.)

Theorem 7.11. Let E be measurable and $1 \le p < \infty$. Then $L^p(E)$ is separable.

Proof (continued). By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_{\mathbb{R}}|f_n|^p=\int_{\mathbb{R}}|f|^p.$$

Therefore by Theorem 7.7, $\{f_n\} \to f$ with respect to the $L^p(\mathbb{R})$ norm. So \mathcal{F} is dense in $L^p(\mathbb{R})$ with respect to the $L^p(\mathbb{R})$ norm by Exercise 7.36. Finally, for any measurable set E, replace \mathcal{F} and each \mathcal{F}_n with functions restricted to E to get that \mathcal{F} (restricted to E) is dense in $L^p(E)$. Therefore $L^p(E)$ is separable.

Theorem 7 11

Theorem 7.11

Theorem 7.11. Let E be measurable and $1 \le p < \infty$. Then $L^p(E)$ is separable.

Proof. Consider S([a,b]), the set of step functions on [a,b]. Define S'([a,b]) to the subset of S([a,b]) which consists of step functions ψ on [a,b] that take on rational values and for which there is a partition $P=\{x_0,x_1,\ldots,x_n\}$ of [a,b] with ψ constant on (x_{k-1},x_k) for $1\leq k\leq n$ and x_k rational for $1\leq k\leq n-1$ ($x_0=a$ and $x_n=b$ "always"). Then S'([a,b]) is countable and S'([a,b]) is dense in S([a,b]) with respect to the L^p norm by Exercise 7.40. By Proposition 7.10, S([a,b]) is dense in $L^p([a,b])$ and so S'([a,b]) is dense in $L^p([a,b])$ (we have $S'([a,b])\subset S([a,b])\subset L^p([a,b])$). For each $n\in\mathbb{N}$, define \mathcal{F}_n to be the functions on \mathbb{R} that vanish outside [-n,n] and whose restrictions to [-n,n] belong to S'([-n,n]). Define $\mathcal{F}=\cup_{n\in\mathbb{N}}\mathcal{F}_n$. Then \mathcal{F} is countable and $\mathcal{F}\subset L^p(\mathbb{R})$. For any $f\in L^p(E)$, define $f_n=f\chi_{[-n,n]}$ and notice that $\lim_{n\to\infty}f_n=f$ (pointwise).

Real Analysis February 18, 2023 7 / 9

Theorem 7

Theorem 7.12

Theorem 7.12. Let E be measurable and $1 \le p < \infty$. Then $C_c(E)$, the linear space of continuous functions on E that vanish outside a bounded set, is dense in $L^p(E)$.

Idea of Proof. By Theorem 7.11, we know that S'([a,b]) is dense in $L^p([a,b])$. The idea is to approximate each element of \mathcal{F} with a continuous function. We do so as follows

This, combined with restrictions of functions to E, proves the result.