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Proposition 8.2

Proposition 8.2

Proposition 8.2. Let E be measurable, 1 < p < 0o, g the conjugate of p,
and g belong to L9(E). Define the functional T on LP(E) by

T(f) = fE gf for all f € LP(E). Then T is a bounded linear functional on
LP(E) and [Tl = llgllq-
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Proposition 8.2

Proposition 8.2

Proposition 8.2. Let E be measurable, 1 < p < 0o, g the conjugate of p,
and g belong to L9(E). Define the functional T on LP(E) by

T(f) = fE gf for all f € LP(E). Then T is a bounded linear functional on
LP(E) and [Tl = llgllq-

Proof. First, for fi,, € LP(E) and o, 5 € R we have
T(afi +ph) = [pglafi+h) =a [cgh+ 8 [cgh = aT(f) + BT(fH),

and so T is linear. Since |T(f)| < ||g|lq|/f]|p by Holder's Inequality, we see
that T is a bounded linear functional on LP(E) and || T ||« < ||g|lq-
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Proposition 8.2

Proposition 8.2. Let E be measurable, 1 < p < 0o, g the conjugate of p,
and g belong to L9(E). Define the functional T on LP(E) by

T(f)= Jcgf forall f € LP(E). Then T is a bounded linear functional on
LP(E) and [| T« = llgllq-

Proof. First, for fi,, € LP(E) and o, 5 € R we have

T(afi + Bh) = [g(ah + 8h) = [ gfi + B [cgh = aT(f) + BT(H),
and so T is linear. Since |T(f)| < ||g|lq|/f]|p by Holder's Inequality, we see
that T is a bounded linear functional on LP(E) and || T« < |/g]lq- By
Theorem 7.1 (with p and q interchanged) the conjugate of g € L9 is

g = |gls 9sen(g)lgl? ! € LP

and T(g*) = fE gg* = ||gllq where ||g*||, = 1. Therefore
[Tl = llgllq- [
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Proposition 8.3

Proposition 8.3. Let T and S be bounded linear functionals on a normed
linear space X. If T = S on a dense subset Xy of X, then T =S5 on X.
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Proposition 8.3

Proposition 8.3

Proposition 8.3. Let T and S be bounded linear functionals on a normed
linear space X. If T = S on a dense subset Xy of X, then T =S5 on X.

Proof. Let g € X. Since X is dense in X, then by Note 7.4.A (or
Exercise 7.36) there is a sequence {g,} C Xo such that g, — g. From
Note 8.1.A, we have S(gn) — S(g) and T(gn) — T(g). Since

S(gn) = T(gn) for all n € N, then S(g) = T(g). O
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Lemma 8.4

Lemma 8.4

Lemma 8.4. Let E be measurable and 1 < p < oo. Suppose g is
integrable over E and there is M > 0 such that | [ gf| < M||f||,, for every

simple function f € LP(E). Then g € L9(E) where q is the conjugate of p.
Moreover, ||g|lq < M.
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Lemma 8.4

Lemma 8.4. Let E be measurable and 1 < p < oo. Suppose g is
integrable over E and there is M > 0 such that | [ gf| < M||f||,, for every
simple function f € LP(E). Then g € L9(E) where q is the conjugate of p.

Moreover, ||g|lq < M.

Proof. Since g is integrable over E, it is finite a.e. on E by Proposition
4.15. So Without loss of generality (or by excising a set of measure zero
from E), we assume g is finite on all of E.
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Lemma 8.4

Lemma 8.4. Let E be measurable and 1 < p < oo. Suppose g is
integrable over E and there is M > 0 such that | [ gf| < M||f||,, for every
simple function f € LP(E). Then g € L9(E) where q is the conjugate of p.
Moreover, ||g|lq < M.

Proof. Since g is integrable over E, it is finite a.e. on E by Proposition
4.15. So Without loss of generality (or by excising a set of measure zero
from E), we assume g is finite on all of E. We first consider the case

p > 1. Since |g| is a nonnegative measurable function, by the Simple
Approximation Theorem, there is a sequence of simple functions {¢,} that
converges pointwise on E to |g| and 0 < ¢, < |g| on E for all n € N. So
{,n} is a sequence of nonnegative measurable functions that converges
pointwise on E to |g|9, and by Fatou's Lemma [ |g[9 < liminf [ ¢7.
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Lemma 8.4

Lemma 8.4. Let E be measurable and 1 < p < oo. Suppose g is
integrable over E and there is M > 0 such that | [ gf| < M||f||,, for every
simple function f € LP(E). Then g € L9(E) where q is the conjugate of p.
Moreover, ||g|lq < M.

Proof. Since g is integrable over E, it is finite a.e. on E by Proposition
4.15. So Without loss of generality (or by excising a set of measure zero
from E), we assume g is finite on all of E. We first consider the case

p > 1. Since |g| is a nonnegative measurable function, by the Simple
Approximation Theorem, there is a sequence of simple functions {¢,} that
converges pointwise on E to |g| and 0 < ¢, < |g| on E for all n € N. So
{,n} is a sequence of nonnegative measurable functions that converges
pointwise on E to |g|?, and by Fatou's Lemma [ |g|? < liminf [ 7. So
to show that |g|? is integrable over E and ||g||q < M it suffices to show
that

/ of < M for all n € N. (10)
E
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Lemma 8.4 (continued 1)

Proof (continued). Let n € N be fixed. We have

0l = 0t < |glpdt = gsgn(g)pd P on E. (11)
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Lemma 8.4 (continued 1)

Proof (continued). Let n € N be fixed. We have
o = enl < lgled Tt = gsen(g)pi T on E. (1)

Define simple function f, as f, = sgn(g)gog_l on E. The function ¢, is
integrable over E, since it is dominated on E by the integrable function
||, by the Integral Comparison Test (Proposition 4.16). Therefore, since
©pn is simple, then ¢, has finite support and hence f, has finite support
and is bounded, so f, € LP(E).
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Lemma 8.4 (continued 1)

Proof (continued). Let n € N be fixed. We have

0l = 0t < |glpdt = gsgn(g)pd P on E. (11)

Define simple function f, as f, = sgn(g)gog_l on E. The function ¢, is
integrable over E, since it is dominated on E by the integrable function
||, by the Integral Comparison Test (Proposition 4.16). Therefore, since
©pn is simple, then ¢, has finite support and hence f, has finite support
and is bounded, so f, € LP(E). We now have

/@ﬂ < /gsgn(g)cpg_1 by monotonicity and (11)
E E

= / gf, by definition of f,
E
M|\ fa||p by hypothesis. (12)

IN
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Lemma 8.4

Lemma 8.4 (continued 2)

Proof (continued). Since g is the conjugate of p, then p(q — 1) = g and

so fE |fplP = f gpp(q b _ fE ©n. We rewrite (12) as
1 1
Je 0 < M ([ lflP)? = M ([ o8)"".
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Lemma 8.4

Lemma 8.4 (continued 2)

Proof (continued). Since g is the conjugate of p, then p(q — 1) = g and
so [ |falP = [ gpp(q D= = [ on. We rewrite (12) as
Jeon <M ([ |fa \P)l/p M ([ eh) P Since ©p is integrable over E by

(12), neither side of this inequality is 0o and so ([ gpﬂ)l_l/p < M. Since

1—1/p=1/q, this implies ||¢,|| < M, which is equivalent to (10) and
the result follows for p > 1.
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Lemma 8.4

Lemma 8.4 (continued 2)

Proof (continued). Since g is the conjugate of p, then p(q — 1) = g and
so fE |fplP = f gpp(q b _ fE ©n. We rewrite (12) as

Jeon <M ([ |fa \P)l/p M ([ eh) P Since ©p is integrable over E by
(12), neither side of this inequality is 0o and so ([ gpﬂ)l_l/p < M. Since

1—1/p=1/q, this implies ||¢,|| < M, which is equivalent to (10) and
the result follows for p > 1.

Now consider the case p = 1. ASSUME integrable function g satisfies the
hypotheses but g ¢ L9(E) = L°°(E). Then parameter M in the
hypotheses is not an essential upper bound for g (i.e., ||g]lcc > M).
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Lemma 8.4 (continued 2)

Proof (continued). Since g is the conjugate of p, then p(q — 1) = g and
so [ |falP = [ gpp(q D= fE ©n. We rewrite (12) as
on < on) " Since p} is integrable over E by
Lol <M (fo1P) P = M ([ 0)P. si bl Eb
(12), neither side of this mequality is 0o and so (¢ gpﬂ)l_l/p < M. Since
1—1/p=1/q, this implies ||¢,|| < M, which is equivalent to (10) and
the result follows for p > 1.

Now consider the case p = 1. ASSUME integrable function g satisfies the
hypotheses but g ¢ L9(E) = L°°(E). Then parameter M in the
hypotheses is not an essential upper bound for g (i.e., ||g]loc > M). Let
Eijn={x€ E||g(x)| > M+1/n} for n € N. Then E;/, C Ey/pq1) and
limp—oo En = {x € E | |g(x)| > M}. By assumption,

m({x € E | |g(x)] > M} > 0.
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Lemma 8.4 (continued 2)

Proof (continued). Since g is the conjugate of p, then p(q — 1) = g and
so [ |falP = [ phla=1) = Je¢n. We rewrite (12) as

Jeen <M (Je |f,,\P)1/p =M (g goﬂ)l/p. Since 7 is integrable over E by
(12), neither side of this inequality is 0o and so ([ gpﬂ)l_l/p < M. Since
1—1/p=1/q, this implies ||¢,|| < M, which is equivalent to (10) and
the result follows for p > 1.

Now consider the case p = 1. ASSUME integrable function g satisfies the
hypotheses but g ¢ L9(E) = L°°(E). Then parameter M in the
hypotheses is not an essential upper bound for g (i.e., ||g]loc > M). Let
Eijn={x€ E||g(x)| > M+1/n} for n € N. Then E;/, C Ey/pq1) and
limp—oo En = {x € E | |g(x)| > M}. By assumption,

m({x € E | |g(x)| > M} > 0. By Continuity of Measure (Theorem 2.15),
limp—co M(Ey/p) = m({x € E | [g(x)] > M}) > 0. So m(E;,p) > 0 for
some N € N. Let E’ be a measurable subset of E;/n such that E’ has
finite positive measure.
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Lemma 8.4 (continued 3)

Proof (continued). Define f = sgn(g)xg. Then f is simple and
f e LY(E) with ||f]l1 = | [ sgn(g)xe’| = m(E") > 0.
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Lemma 8.4

Lemma 8.4 (continued 3)

Proof (continued). Define f = sgn(g)xg. Then f is simple and
f € LY(E) with ||f]l1 = | [z sgn(g)xe’| = m(E") > 0. But,

/ng' = /E gsgn(g)‘

= /E lg| > (M + 1/N)m(E") > Mm(E") = M|f|1,

a CONTRADICTION to the hypotheses of the lemma.

/E gsgn(g)xe
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Lemma 8.4

Lemma 8.4 (continued 3)

Proof (continued). Define f = sgn(g)xg. Then f is simple and
f € LY(E) with ||f]l1 = | [z sgn(g)xe’| = m(E") > 0. But,

/ng' = /E gsgn(g)‘

= /E lg| > (M + 1/N)m(E") > Mm(E") = M|f|1,

/E gsgn(g)xe

a CONTRADICTION to the hypotheses of the lemma. So the assumption
that g & L9(E) is false, and in fact g € L9(E). In addition

llgllg = llglloc < M (or else the argument above yields the same
contradiction).

O
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Theorem 8.5

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).
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Theorem 8.5

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).

Proof. Let p > 1 (the case p = 1 is similar). For x € [a, b], define

®(x) = T(X[ax))- For each [c,d) C [a, b] we have X[c ) = X[a,d) = X[a,c)
and since T is linear

&(d) = &(c) = T(X[a,a)) — T(X[a,0)) = T(X[a,0) = X[a,:0)) = T (X[c,a))-
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Theorem 8.5

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).

Proof. Let p > 1 (the case p = 1 is similar). For x € [a, b], define
®(x) = T(X[ax))- For each [c,d) C [a, b] we have X[c ) = X[a,d) = X[a,c)
and since T is linear

&(d) = &(c) = T(X[a,a)) — T(X[a,0)) = T(X[a,0) = X[a,:0)) = T (X[c,a))-
So for {[ak, bk)}}_; a finite disjoint collection of intervals in [a, b],

Z |P(bk) — P(ak)| = ZEkT (X[ax,b¢)) (Z EkXak,bx) )
k=1

k=1
where g, = sgn(®(bx) — P(ax)). So for simple function
f =3 k=1 €kX[ay,by), We have [T(F)] < || T|l.[/f]|, and

1/p 1
1Fllo = { gy [FIP T = (s (be — 2))™”.
Real Analysis February 28, 2023 9 /16



Theorem 8.5 (continued 1)

Proof (continued). So for given € > 0, with § = (¢/|| T||.)P, we have
that >/, (bx — ax) < 0 implies

Z\¢ br) — D(ak)| < [ Tl (/I TII)P)P = e.

That is,  is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).
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Theorem 8.5 (continued 1)

Proof (continued). So for given € > 0, with § = (¢/|| T||.)P, we have
that >/, (bx — ax) < 0 implies

Z\¢ br) — D(ak)| < [ Tl (/I TII)P)P = e.

That is,  is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).

By Theorem 6.10 in Section 6.5, g = ¢’ is integrable over [a, b] and
®(x) = [~ g for all x € [a, b]. So for each [c,d] C (a, b),

T(Xje,d)) = - / / / / EX[c,d)-
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Theorem 8.5 (continued 1)

Proof (continued). So for given € > 0, with § = (¢/|| T||.)P, we have
that >/, (bx — ax) < 0 implies

Z\¢ br) — D(ak)| < [ Tl (/I TII)P)P = e.

That is,  is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).

By Theorem 6.10 in Section 6.5, g = ¢’ is integrable over [a, b] and
®(x) = [~ g for all x € [a, b]. So for each [c,d] C (a, b),

T(Xje,d)) = - / / / / EX[c,d)-

For step function f ="} _; YkX(ax,bi) ON [3, b] (we are not concerned
about the values of f at the endpoints of the subintervals since T involves
integration), we have. ..
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Theorem 8.5 (continued 2)

Proof (continued).
b
a

T(f) = T <ZYkX(ak,bk)) = Zyk T(X(ak,bk)) = Eyk/ gX(ak,bk)
k=1 k=1 k=1

b n b
:/ g (Zykx(ak,bk)> :/ gf. (*)
a k:]. a
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Theorem 8.5 (continued 2)

Proof (continued).
b
a

T(f) = T <ZYkX(ak,bk)) = Zyk T(X(ak,bk)) = Eyk/ gX(ak,bk)
k=1 k=1 k=1

b n b
=/ g (ZYkX(ak,bk)> =/ gf. (*)
a k:]. a

By Proposition 7.10, for simple f on [a, b] there is a sequence of step
functions {¢n} that converges to f with respect to the LP norm and is
uniformly pointwise bounded on [a, b]. Since T is linear and bounded on
LP([a, b]), then limp_co T(n) = T(f) by Note 8.1.A.
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Theorem 8.5 (continued 2)

Proof (continued).
b
a

T(f) = T <ZYkX(ak,bk)) = Zyk T(X(ak,bk)) = Eyk/ gX(ak,bk)
k=1 k=1 k=1

b n b
=/ g (ZYkX(ak,bk)> =/ gf. (*)
a k:]. a

By Proposition 7.10, for simple f on [a, b] there is a sequence of step
functions {¢n} that converges to f with respect to the LP norm and is
uniformly pointwise bounded on [a, b]. Since T is linear and bounded on
LP([a, b]), then limp—o0 T(pn) = T(f) by Note 8.1.A. By the Lebesgue
Dominated Convergence Theorem, lim,_ (fab g¢n> = fab gf (gis
integrable on [a, b] and ¢}, is uniformly pointwise bounded, so this provides
the bound on gy, for the Lebesgue Dominated Convergence Theorem).
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Theorem 8.5 (continued 3)

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).

Proof (continued). So for simple function f, by (x) we have

T(f) = lim T(pn) = lim (/abgson> —/abgf.
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Theorem 8.5 (continued 3)

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).

Proof (continued). So for simple function f, by (x) we have

T(f) = lim T(pn) = lim (/abgson> —/abgf.

Also, since T is bounded, )fabgf‘ = |T(f)| < || T|«||fllp for all simple
functions f. By Lemma 8.4, g € L9([a, b]). By Proposition 8.2, the linear
functional L: f — fab fg is bounded on LP([a, b]).
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Theorem 8.5 (continued 3)

Theorem 8.5. Let 1 < p < co. Suppose T is a bounded linear functional
on LP([a, b]). Then there is a function g € L9([a, b]), where g is the
conjugate of p, for which T(f) = f[a p &f forall f e LP([a, b]).

Proof (continued). So for simple function f, by (x) we have

T(f) = lim T(pn) = lim (/abgson> —/abgf.

Also, since T is bounded, )fabgf‘ = |T(f)| < || T|«||fllp for all simple
functions f. By Lemma 8.4, g € L9([a, b]). By Proposition 8.2, the linear
functional L : f — fab fg is bounded on LP([a, b]). Functional L is the
same as functional T on all simple functions, simple functions are dense in
LP([a, b]) (by Proposition 7.9), and so L = T on all of LP([a, b]) (by
Proposition 8.3). That is, T(f) = [ gf for all f € LP([a, b)). O
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Riesz Representation Theorem

Riesz Representation Theorem

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € L9(E), define the bounded linear functional Rz on LP(E) by
Re(f) = [g gf forall f € LP(E). Then for each bounded linear functional

T on LP(E), there is a unique function g € L9(E) for which Ry = T and
1Tl = llgllq-
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Riesz Representation Theorem

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € L9(E), define the bounded linear functional Rz on LP(E) by
Re(f) = [g gf forall f € LP(E). Then for each bounded linear functional
T on LP(E), there is a unique function g € L9(E) for which Ry = T and

1T = llgllg-

Proof. By Proposition 8.2, for each g € LY(E), R, is a bounded linear
functional on LP(E) for which ||Rg|l« = ||g|lq- Since integration is linear,
for each g1, g € LI(E),

Rgl—Rg2Z/g1f—/g2f:/(g1—g2)f:Rg1gz-
E E E
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Riesz Representation Theorem

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € L9(E), define the bounded linear functional Rz on LP(E) by
Re(f) = [g gf forall f € LP(E). Then for each bounded linear functional
T on LP(E), there is a unique function g € L9(E) for which Ry = T and

1T = llgllg-

Proof. By Proposition 8.2, for each g € LY(E), R, is a bounded linear
functional on LP(E) for which ||Rg|l« = ||g|lq- Since integration is linear,
for each g1, g € LI(E),

Rgl—Rg2Z/g1f—/g2f:/(g1—g2)f:Rg1gz-
E E E

So if Rg; = Rg,, then Ry, g, =0 and [|[Rg—g, |« = [lg1 — g2/l =0, so
g1 = g» (a.e.). Therefore, for a bounded linear functional T on LP(E),
there is at most one function g € L9(E) for which R, = T.
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Riesz Representation Theorem

Riesz Representation Theorem (continued 1)

Proof (continued). We now need to show that for each bounded linear

functional T on LP(E), there is a function g € LY(E) for which T =R,.
By Theorem 8.5, this holds for E = [a, b].
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Riesz Representation Theorem

Riesz Representation Theorem (continued 1)

Proof (continued). We now need to show that for each bounded linear
functional T on LP(E), there is a function g € LY(E) for which T =R,.
By Theorem 8.5, this holds for E = [a, b]. Next, suppose E =R and let T
be a bounded linear functional of LP(R). For fixed n € N, define T, on
LP([—n, n]) by Ta(f) = T(f) for all f € LP([—n, n]) where f is the
extension of f to all of R such that f =0 for x € R\ [—n, n] and

A

f(x) = f(x) for x € [—n, n].
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Riesz Representation Theorem

Riesz Representation Theorem (continued 1)

Proof (continued). We now need to show that for each bounded linear
functional T on LP(E), there is a function g € LY(E) for which T =R,.
By Theorem 8.5, this holds for E = [a, b]. Next, suppose E =R and let T
be a bounded linear functional of LP(R). For fixed n € N, define T, on
LP([—n, n]) by Ta(f) = T(f) for all f € LP([—n, n]) where f is the
extension of f to all of R such that f =0 for x € R\ [—n, n] and

F(x) = f(x) for x € [=n, n]. Then ||f]|, =[], and so

| Ta(O) = [TON < ITIlFllp = I T[]l for all £ € LP([—n, n]). So

| Tall« < || T||«. By Theorem 8.5, there is g, € L([—n, n]) for which

To(F) = / gf for all £ € LP([—n, n]) and [lgnllq = | Tolls < [ T[l.. (16)

—n
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Riesz Representation Theorem (continued 1)

Proof (continued). We now need to show that for each bounded linear
functional T on LP(E), there is a function g € LY(E) for which T =R,.
By Theorem 8.5, this holds for E = [a, b]. Next, suppose E =R and let T
be a bounded linear functional of LP(R). For fixed n € N, define T, on
LP([—n, n]) by Ta(f) = T(f) for all f € LP([—n, n]) where f is the
extension of f to all of R such that f =0 for x € R\ [—n, n] and

F(x) = f(x) for x € [=n, n]. Then ||f]|, =[], and so

| Ta(O) = [TON < ITIlFllp = I T[]l for all £ € LP([—n, n]). So

| Tall« < || T||«. By Theorem 8.5, there is g, € L([—n, n]) for which

n

To(f) = [ gf forall £ € 2({=n.al) and lignlla = Tl < Tl (16
—n

As commented above where we concluded that g = g2 a.e. on E, we now

conclude that the restriction of g,y to [—n, n] equals g, a.e. on [—n, n].

So define g as a measurable function on R which equals g, a.e. on [—n, n]

for each n € N.
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Riesz Representation Theorem (continued 2)

Proof (continued). By the definition of T, and the definition of g,,

along with (16), we have that for all f € LP(R) that vanish outside a
bounded set,

T(f) = lim Ty(f)

n—oo

= lim </ g,,f> by the definition of g,

—n

= /gf by the definition of g.
R

So lim oo (/7 117) = falgl? < (IT]l.)7 (by (16)) and g € L9(R).
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Riesz Representation Theorem (continued 2)

Proof (continued). By the definition of T, and the definition of g,,
along with (16), we have that for all f € LP(R) that vanish outside a
bounded set,

T(f) = lim Ty(f)

n—oo

= lim </ g,,f> by the definition of g,

—
n—oo _n

= /gf by the definition of g.
R

S0 limn oo (", 1€17) = Ji 1819 < (I T[1.)7 (by (16)) and g € LI(R).
Since the bounded linear functionals Rz and T agree on the set of LP(R)
functions which vanish outside a bounded set (which is a set dense in
LP(RR)), then by Proposition 8.3, Rz equals T on all of LP(RR).
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Riesz Representation Theorem (continued 3)

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € LY(E), define the bounded linear functional R4 on LP(E) by
Re(f) = [¢ gf forall f € LP(E). Then for each bounded linear functional
T on LP(E), there is a unique function g € L9(E) for which R = T and

IT1 = llgllp-

Proof (continued). Finally, consider measurable set E and bounded
linear functional T on LP(E).
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Riesz Representation Theorem (continued 3)

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € LY(E), define the bounded linear functional R4 on LP(E) by
Re(f) = [¢ gf forall f € LP(E). Then for each bounded linear functional
T on LP(E), there is a unique function g € L9(E) for which R = T and

IT1 = llgllp-

Proof (continued). Finally, consider measurable set E and bounded
linear functional T on LP(E). Define linear functional T on LP(R) as
T(f) = T(f|g). Then T is a bounded linear functional on LP(R).
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Riesz Representation Theorem (continued 3)

Riesz Representation Theorem.

Let E be measurable, 1 < p < 0o, and g the conjugate of p. Then for
each g € LY(E), define the bounded linear functional R4 on LP(E) by
Re(f) = [¢ gf forall f € LP(E). Then for each bounded linear functional
T on LP(E), there is a unique function g € L9(E) for which R = T and

IT1 = llgllp-

Proof (continued). Finally, consider measurable set E and bounded
linear functional T on LP(E). Define linear functional T on LP(R) as
T(f) = T(f|g). Then T is a bounded linear functional on LP(R). By
above, there is g € L9(R) for which Tis represented by integration over R
against 2. Define g to be the restriction of & to E. Then T = R,. Ol
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