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Chapter 8. The Lp Spaces: Duality and Weak Convergence
8.1. The Riesz Representation for the Dual of Lp, 1 ≤ 1 < ∞—Proofs of

Theorems
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Proposition 8.2

Proposition 8.2

Proposition 8.2. Let E be measurable, 1 ≤ p < ∞, q the conjugate of p,
and g belong to Lq(E ). Define the functional T on Lp(E ) by
T (f ) =

∫
E gf for all f ∈ Lp(E ). Then T is a bounded linear functional on

Lp(E ) and ‖T‖∗ = ‖g‖q.

Proof. First, for f1, f2 ∈ Lp(E ) and α, β ∈ R we have
T (αf1 + βf2) =

∫
E g(αf1 + βf2) = α

∫
E gf1 + β

∫
E gf2 = αT (f1) + βT (f2),

and so T is linear. Since |T (f )| ≤ ‖g‖q‖f ‖p by Hölder’s Inequality, we see
that T is a bounded linear functional on Lp(E ) and ‖T‖∗ ≤ ‖g‖q.

By
Theorem 7.1 (with p and q interchanged) the conjugate of g ∈ Lq is

g∗ = ‖g‖1−q
q sgn(g)|g |q−1 ∈ Lp

and T (g∗) =
∫
E gg∗ = ‖g‖q where ‖g∗‖p = 1. Therefore

‖T‖∗ = ‖g‖q.
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Proposition 8.3

Proposition 8.3

Proposition 8.3. Let T and S be bounded linear functionals on a normed
linear space X . If T = S on a dense subset X0 of X , then T = S on X .

Proof. Let g ∈ X . Since X0 is dense in X , then by Note 7.4.A (or
Exercise 7.36) there is a sequence {gn} ⊂ X0 such that gn → g . From
Note 8.1.A, we have S(gn) → S(g) and T (gn) → T (g). Since
S(gn) = T (gn) for all n ∈ N, then S(g) = T (g).
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Lemma 8.4

Lemma 8.4

Lemma 8.4. Let E be measurable and 1 ≤ p < ∞. Suppose g is
integrable over E and there is M > 0 such that |

∫
E gf | ≤ M‖f ‖p for every

simple function f ∈ Lp(E ). Then g ∈ Lq(E ) where q is the conjugate of p.
Moreover, ‖g‖q ≤ M.

Proof. Since g is integrable over E , it is finite a.e. on E by Proposition
4.15. So Without loss of generality (or by excising a set of measure zero
from E ), we assume g is finite on all of E .

We first consider the case
p > 1. Since |g | is a nonnegative measurable function, by the Simple
Approximation Theorem, there is a sequence of simple functions {ϕn} that
converges pointwise on E to |g | and 0 ≤ ϕn ≤ |g | on E for all n ∈ N. So
{ϕq

n} is a sequence of nonnegative measurable functions that converges
pointwise on E to |g |q, and by Fatou’s Lemma

∫
E |g |

q ≤ lim inf
∫
E ϕq

n. So
to show that |g |q is integrable over E and ‖g‖q ≤ M it suffices to show
that ∫

E
ϕq

n ≤ Mq for all n ∈ N. (10)
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Lemma 8.4

Lemma 8.4 (continued 1)

Proof (continued). Let n ∈ N be fixed. We have

ϕq
n = ϕnϕ

q−1
n ≤ |g |ϕq−1

n = gsgn(g)ϕq−1
n on E . (11)

Define simple function fn as fn = sgn(g)ϕq−1
n on E . The function ϕn is

integrable over E , since it is dominated on E by the integrable function
|g |, by the Integral Comparison Test (Proposition 4.16). Therefore, since
ϕn is simple, then ϕn has finite support and hence fn has finite support
and is bounded, so fn ∈ Lp(E ).

We now have∫
E

ϕq
n ≤

∫
E

gsgn(g)ϕq−1
n by monotonicity and (11)

=

∫
E

gfn by definition of fn

≤ M‖fn‖p by hypothesis. (12)
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Lemma 8.4

Lemma 8.4 (continued 2)

Proof (continued). Since q is the conjugate of p, then p(q − 1) = q and

so
∫
E |fn|

p =
∫
E ϕ

p(q−1)
n =

∫
E ϕq

n. We rewrite (12) as∫
E ϕq

n ≤ M
(∫

E |fn|
p
)1/p

= M
(∫

E ϕq
n

)1/p
. Since ϕq

n is integrable over E by

(12), neither side of this inequality is ∞ and so
(∫

E ϕq
n

)1−1/p ≤ M. Since
1− 1/p = 1/q, this implies ‖ϕn‖ ≤ M, which is equivalent to (10) and
the result follows for p > 1.

Now consider the case p = 1. ASSUME integrable function g satisfies the
hypotheses but g 6∈ Lq(E ) = L∞(E ). Then parameter M in the
hypotheses is not an essential upper bound for g (i.e., ‖g‖∞ > M). Let
E1/n = {x ∈ E | |g(x)| > M + 1/n} for n ∈ N. Then E1/n ⊂ E1/(n+1) and
limn→∞ En = {x ∈ E | |g(x)| > M}. By assumption,
m({x ∈ E | |g(x)| > M} > 0. By Continuity of Measure (Theorem 2.15),
limn→∞m(E1/n) = m({x ∈ E | |g(x)| > M}) > 0. So m(E1/N) > 0 for
some N ∈ N. Let E ′ be a measurable subset of E1/N such that E ′ has
finite positive measure.
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Lemma 8.4

Lemma 8.4 (continued 3)

Proof (continued). Define f = sgn(g)χE ′ . Then f is simple and
f ∈ L1(E ) with ‖f ‖1 =

∣∣∫
E sgn(g)χE ′

∣∣ = m(E ′) > 0. But,∣∣∣∣∫
E

gf

∣∣∣∣ = ∣∣∣∣∫
E

gsgn(g)χE ′

∣∣∣∣ = ∣∣∣∣∫
E ′

gsgn(g)

∣∣∣∣
=

∫
E ′
|g | ≥ (M + 1/N)m(E ′) > Mm(E ′) = M‖f ‖1,

a CONTRADICTION to the hypotheses of the lemma.

So the assumption
that g 6∈ Lq(E ) is false, and in fact g ∈ Lq(E ). In addition
‖g‖q = ‖g‖∞ ≤ M (or else the argument above yields the same
contradiction).
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Theorem 8.5

Theorem 8.5

Theorem 8.5. Let 1 ≤ p < ∞. Suppose T is a bounded linear functional
on Lp([a, b]). Then there is a function g ∈ Lq([a, b]), where q is the
conjugate of p, for which T (f ) =

∫
[a,b] gf for all f ∈ Lp([a, b]).

Proof. Let p > 1 (the case p = 1 is similar). For x ∈ [a, b], define
Φ(x) = T (χ[a,x)). For each [c , d) ⊂ [a, b] we have χ[c,d) = χ[a,d) − χ[a,c)

and since T is linear

Φ(d)− Φ(c) = T (χ[a,d))− T (χ[a,c)) = T (χ[a,d) − χ[a,c)) = T (χ[c,d)).

So for {[ak , bk)}n
k=1 a finite disjoint collection of intervals in [a, b],

n∑
k=1

|Φ(bk)− Φ(ak)| =
n∑

k=1

εkT (χ[ak ,bk )) = T

(
n∑

k=1

εkχ[ak ,bk )

)
where εk = sgn(Φ(bk)− Φ(ak)). So for simple function
f =

∑n
k=1 εkχ[ak ,bk ), we have |T (f )| ≤ ‖T‖∗‖f ‖p and

‖f ‖p =
{∫

[a,b] |f |
p
}1/p

= (
∑n

k=1(bk − ak))1/p.
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Theorem 8.5

Theorem 8.5 (continued 1)

Proof (continued). So for given ε > 0, with δ = (ε/‖T‖∗)p, we have
that

∑n
k=1(bk − ak) < δ implies

n∑
k=1

|Φ(bk)− Φ(ak)| ≤ ‖T‖∗ ((ε/‖T‖∗)p)1/p = ε.

That is, Φ is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).

By Theorem 6.10 in Section 6.5, g = Φ′ is integrable over [a, b] and
Φ(x) =

∫ x
a g for all x ∈ [a, b]. So for each [c , d ] ⊂ (a, b),

T (χ[c,d)) = Φ(d)− Φ(c) =

∫ d

a
g −

∫ c

a
g =

∫ d

c
g =

∫ b

a
gχ[c,d).

For step function f =
∑n

k=1 ykχ(ak ,bk ) on [a, b] (we are not concerned
about the values of f at the endpoints of the subintervals since T involves
integration), we have. . .

() Real Analysis February 28, 2023 10 / 16

https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf


Theorem 8.5

Theorem 8.5 (continued 1)

Proof (continued). So for given ε > 0, with δ = (ε/‖T‖∗)p, we have
that

∑n
k=1(bk − ak) < δ implies

n∑
k=1

|Φ(bk)− Φ(ak)| ≤ ‖T‖∗ ((ε/‖T‖∗)p)1/p = ε.

That is, Φ is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).

By Theorem 6.10 in Section 6.5, g = Φ′ is integrable over [a, b] and
Φ(x) =

∫ x
a g for all x ∈ [a, b]. So for each [c , d ] ⊂ (a, b),

T (χ[c,d)) = Φ(d)− Φ(c) =

∫ d

a
g −

∫ c

a
g =

∫ d

c
g =

∫ b

a
gχ[c,d).

For step function f =
∑n

k=1 ykχ(ak ,bk ) on [a, b] (we are not concerned
about the values of f at the endpoints of the subintervals since T involves
integration), we have. . .

() Real Analysis February 28, 2023 10 / 16

https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf


Theorem 8.5

Theorem 8.5 (continued 1)

Proof (continued). So for given ε > 0, with δ = (ε/‖T‖∗)p, we have
that

∑n
k=1(bk − ak) < δ implies

n∑
k=1

|Φ(bk)− Φ(ak)| ≤ ‖T‖∗ ((ε/‖T‖∗)p)1/p = ε.

That is, Φ is absolutely continuous on [a, b] (see Section 6.4. Absolutely
Continuous Functions for the definition).

By Theorem 6.10 in Section 6.5, g = Φ′ is integrable over [a, b] and
Φ(x) =

∫ x
a g for all x ∈ [a, b]. So for each [c , d ] ⊂ (a, b),

T (χ[c,d)) = Φ(d)− Φ(c) =

∫ d

a
g −

∫ c

a
g =

∫ d

c
g =

∫ b

a
gχ[c,d).

For step function f =
∑n

k=1 ykχ(ak ,bk ) on [a, b] (we are not concerned
about the values of f at the endpoints of the subintervals since T involves
integration), we have. . .

() Real Analysis February 28, 2023 10 / 16

https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf
https://faculty.etsu.edu/gardnerr/5210/notes/6-4.pdf


Theorem 8.5

Theorem 8.5 (continued 2)

Proof (continued).

T (f ) = T

(
n∑

k=1

ykχ(ak ,bk )

)
=

n∑
k=1

ykT (χ(ak ,bk )) =
n∑

k=1

yk

∫ b

a
gχ(ak ,bk )

=

∫ b

a
g

(
n∑

k=1

ykχ(ak ,bk )

)
=

∫ b

a
gf . (∗)

By Proposition 7.10, for simple f on [a, b] there is a sequence of step
functions {ϕn} that converges to f with respect to the Lp norm and is
uniformly pointwise bounded on [a, b]. Since T is linear and bounded on
Lp([a, b]), then limn→∞ T (ϕn) = T (f ) by Note 8.1.A.

By the Lebesgue

Dominated Convergence Theorem, limn→∞

(∫ b
a gϕn

)
=
∫ b
a gf (g is

integrable on [a, b] and ϕn is uniformly pointwise bounded, so this provides
the bound on gϕn for the Lebesgue Dominated Convergence Theorem).
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Theorem 8.5

Theorem 8.5 (continued 3)

Theorem 8.5. Let 1 ≤ p < ∞. Suppose T is a bounded linear functional
on Lp([a, b]). Then there is a function g ∈ Lq([a, b]), where q is the
conjugate of p, for which T (f ) =

∫
[a,b] gf for all f ∈ Lp([a, b]).

Proof (continued). So for simple function f , by (∗) we have

T (f ) = lim
n→∞

T (ϕn) = lim
n→∞

(∫ b

a
gϕn

)
=

∫ b

a
gf .

Also, since T is bounded,
∣∣∣∫ b

a gf
∣∣∣ = |T (f )| ≤ ‖T‖∗‖f ‖p for all simple

functions f . By Lemma 8.4, g ∈ Lq([a, b]). By Proposition 8.2, the linear

functional L : f →
∫ b
a fg is bounded on Lp([a, b]).

Functional L is the
same as functional T on all simple functions, simple functions are dense in
Lp([a, b]) (by Proposition 7.9), and so L = T on all of Lp([a, b]) (by

Proposition 8.3). That is, T (f ) =
∫ b
a gf for all f ∈ Lp([a, b]).
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Riesz Representation Theorem

Riesz Representation Theorem

Riesz Representation Theorem.
Let E be measurable, 1 ≤ p < ∞, and q the conjugate of p. Then for
each g ∈ Lq(E ), define the bounded linear functional Rg on Lp(E ) by
Rg (f ) =

∫
E gf for all f ∈ Lp(E ). Then for each bounded linear functional

T on Lp(E ), there is a unique function g ∈ Lq(E ) for which Rg = T and
‖T‖∗ = ‖g‖q.

Proof. By Proposition 8.2, for each g ∈ Lq(E ), Rg is a bounded linear
functional on Lp(E ) for which ‖Rg‖∗ = ‖g‖q. Since integration is linear,
for each g1, g2 ∈ Lq(E ),

Rg1 −Rg2 =

∫
E

g1f −
∫

E
g2f =

∫
E
(g1 − g2)f = Rg1−g2 .

So if Rg1 = Rg2 , then Rg1−g2 = 0 and ‖Rg1−g2‖∗ = ‖g1 − g2‖q = 0, so
g1 = g2 (a.e.). Therefore, for a bounded linear functional T on Lp(E ),
there is at most one function g ∈ Lq(E ) for which Rg = T .
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Riesz Representation Theorem

Riesz Representation Theorem (continued 1)

Proof (continued). We now need to show that for each bounded linear
functional T on Lp(E ), there is a function g ∈ Lq(E ) for which T = Rg .
By Theorem 8.5, this holds for E = [a, b]. Next, suppose E = R and let T
be a bounded linear functional of Lp(R). For fixed n ∈ N, define Tn on
Lp([−n, n]) by Tn(f ) = T (f̂ ) for all f ∈ Lp([−n, n]) where f̂ is the
extension of f to all of R such that f̂ = 0 for x ∈ R \ [−n, n] and
f̂ (x) = f (x) for x ∈ [−n, n].

Then ‖f ‖p = ‖f̂ ‖p, and so
|Tn(f )| = |T (f̂ )| ≤ ‖T‖∗‖f̂ ‖p = ‖T‖∗‖f ‖p for all f ∈ Lp([−n, n]). So
‖Tn‖∗ ≤ ‖T‖∗. By Theorem 8.5, there is gn ∈ Lq([−n, n]) for which

Tn(f ) =

∫ n

−n
gnf for all f ∈ Lp([−n, n]) and ‖gn‖q = ‖Tn‖∗ ≤ ‖T‖∗. (16)

As commented above where we concluded that g1 = g2 a.e. on E , we now
conclude that the restriction of gn+1 to [−n, n] equals gn a.e. on [−n, n].
So define g as a measurable function on R which equals gn a.e. on [−n, n]
for each n ∈ N.
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Riesz Representation Theorem

Riesz Representation Theorem (continued 2)

Proof (continued). By the definition of Tn and the definition of gn,
along with (16), we have that for all f ∈ Lp(R) that vanish outside a
bounded set,

T (f ) = lim
n→∞

Tn(f )

= lim
n→∞

(∫ n

−n
gnf

)
by the definition of gn

=

∫
R

gf by the definition of g .

So limn→∞

(∫ n
−n |g |

q
)

=
∫

R |g |
q ≤ (‖T‖∗)q (by (16)) and g ∈ Lq(R).

Since the bounded linear functionals Rg and T agree on the set of Lp(R)
functions which vanish outside a bounded set (which is a set dense in
Lp(R)), then by Proposition 8.3, Rg equals T on all of Lp(R).
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Riesz Representation Theorem

Riesz Representation Theorem (continued 3)

Riesz Representation Theorem.
Let E be measurable, 1 ≤ p < ∞, and q the conjugate of p. Then for
each g ∈ Lq(E ), define the bounded linear functional Rg on Lp(E ) by
Rg (f ) =

∫
E gf for all f ∈ Lp(E ). Then for each bounded linear functional

T on Lp(E ), there is a unique function g ∈ Lq(E ) for which Rg = T and
‖T‖∗ = ‖g‖p.

Proof (continued). Finally, consider measurable set E and bounded
linear functional T on Lp(E ). Define linear functional T̂ on Lp(R) as
T̂ (f ) = T (f |E ). Then T is a bounded linear functional on Lp(R).

By
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