Real Analysis

Chapter 8. The L^p **Spaces: Duality and Weak Convergence** 8.2. Weak Sequential Convergence in L^p —Proofs of Theorems

Table of contents

1 Lemma A

- 2 Theorem 8.7
- 3 Corollary 8.8
- Proposition 8.9
- 5 Theorem 8.10
- 6 Theorem 8.11
 - 7 Theorem 8.12
- 8 Radon-Riesz Theorem for p = 2
- Orollary 8.13

Lemma A

Lemma A. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \le p < \infty$.

Proof. Let $\{f_n\} \subset L^p(E)$ and suppose $\{f_n\} \rightarrow f$ and $\{f_n\} \rightarrow g$. Recall from Hölder's Inequality that the conjugate of $f \in L^p(E)$ is $f^* = \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^q(E)$ and $\int_E ff^* = \|f\|_p$.

Lemma A

Lemma A. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \le p < \infty$.

Proof. Let $\{f_n\} \subset L^p(E)$ and suppose $\{f_n\} \rightharpoonup f$ and $\{f_n\} \rightharpoonup g$. Recall from Hölder's Inequality that the conjugate of $f \in L^p(E)$ is $f^* = \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^q(E)$ and $\int_E ff^* = \|f\|_p$. So $(f-g)^* \in L^q(E)$ and there is $T \in L^p(E)^*$ such that

$$T(f) = \int_{E} (f - g)f = \lim_{n \to \infty} T(f_n) = \lim_{n \to \infty} \left(\int_{E} (f - g)f_n \right)$$

= $T(g)$ since $\{f_n\} \rightarrow f$ and $\{f_n\} \rightarrow g$
= $\int_{E} (f - g)^*g$.

Rearranging, $\int_E (f-g)^* - \int_E (f-g)^* g = 0$, or $\int_E (f-g)^* (f-g) = 0$, or (by the above observation), $||f-g||_p = 0$.

Lemma A

Lemma A. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \le p < \infty$.

Proof. Let $\{f_n\} \subset L^p(E)$ and suppose $\{f_n\} \rightharpoonup f$ and $\{f_n\} \rightharpoonup g$. Recall from Hölder's Inequality that the conjugate of $f \in L^p(E)$ is $f^* = \|f\|_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^q(E)$ and $\int_E ff^* = \|f\|_p$. So $(f-g)^* \in L^q(E)$ and there is $T \in L^p(E)^*$ such that

$$T(f) = \int_{E} (f - g)f = \lim_{n \to \infty} T(f_n) = \lim_{n \to \infty} \left(\int_{E} (f - g)f_n \right)$$

= $T(g)$ since $\{f_n\} \rightarrow f$ and $\{f_n\} \rightarrow g$
= $\int_{E} (f - g)^* g$.

Rearranging, $\int_E (f-g)^* - \int_E (f-g)^* g = 0$, or $\int_E (f-g)^* (f-g) = 0$, or (by the above observation), $||f-g||_p = 0$.

Theorem 8.7. Let f be a measurable set and $1 \le p < \infty$. Suppose $\{f_n\} \rightharpoonup f$ in $L^p(E)$. Then $\{f_n\}$ is bounded in $L^p(E)$ and $\|f\|_p \le \liminf \|f_n\|_p$.

Proof. Let q be the conjugate of p and f^* the conjugate function of f as given in Hölder's Inequality. For the claimed inequality, we have

$$\int_{E} f^{*} f_{n} = \int_{E} |f^{*} f_{n}| \text{ since } \operatorname{sgn}(f) = \operatorname{sgn}(f^{*})$$

$$\leq ||f^{*}||_{q} ||f_{n}||_{p} \text{ by Hölder's Inequality}$$

$$= ||f_{n}||_{p} \text{ by Hölder's Inequality ("Moreover")}$$

for all $n \in \mathbb{N}$. Since $\{f_n\} \rightarrow f$ in $L^p(E)$ and $f^* \in L^q(E)$, then by Proposition 8.6 (with $g = f^*$) we have

Theorem 8.7. Let f be a measurable set and $1 \le p < \infty$. Suppose $\{f_n\} \rightharpoonup f$ in $L^p(E)$. Then $\{f_n\}$ is bounded in $L^p(E)$ and $\|f\|_p \le \liminf \|f_n\|_p$.

Proof. Let q be the conjugate of p and f^* the conjugate function of f as given in Hölder's Inequality. For the claimed inequality, we have

$$\int_{E} f^{*} f_{n} = \int_{E} |f^{*} f_{n}| \text{ since } \operatorname{sgn}(f) = \operatorname{sgn}(f^{*})$$

$$\leq \|f^{*}\|_{q} \|f_{n}\|_{p} \text{ by Hölder's Inequality}$$

$$= \|f_{n}\|_{p} \text{ by Hölder's Inequality ("Moreover")}$$

for all $n \in \mathbb{N}$. Since $\{f_n\} \rightarrow f$ in $L^p(E)$ and $f^* \in L^q(E)$, then by Proposition 8.6 (with $g = f^*$) we have

Theorem 8.7 (continued 1)

Proof (continued).

$$||f||_{p} = \int_{E} f^{*}f \text{ by Hölder's Inequality ("Moreover")}$$
$$= \lim_{n \to \infty} \int_{E} f^{*}f_{n} \text{ by Proposition 8.6}$$

$\leq \quad \liminf \|f_n\|_p \text{ by the inequality established above for all } n \in \mathbb{N}.$

Next, we show $\{f_n\}$ is bounded in $L^p(E)$. ASSUME $\{\|f_n\|_p\}$ is unbounded. Then by Problem 8.18 [By possibly taking a subsequence of $\{f_n\}$ and relabeling, we may suppose $\{f_n\| \ge \alpha_n = n3^n$ for all n. By possibly taking a further subsequence and relabeling, we may suppose $\|f_n\|/\alpha_n \to \alpha \in [1, \infty]$. Define $g_n = (\alpha_n/\|f_n\|)f_n$ for each $n \in \mathbb{N}$. Then $\{g_n\}$ converges weakly to αf and $\|g_n\| = n3^n$ for all $n \in \mathbb{N}$.], without loss of generality we suppose

$$\|f_n\|_p = n3^n \text{ for all } n \in \mathbb{N}$$
(18)

(these f_n 's are the g_n 's of Problem 8.18).

(

Theorem 8.7 (continued 1)

Proof (continued).

$$||f||_{p} = \int_{E} f^{*}f \text{ by H\"older's Inequality ("Moreover")}$$
$$= \lim_{n \to \infty} \int_{E} f^{*}f_{n} \text{ by Proposition 8.6}$$

 $\leq \quad \liminf \|f_n\|_p \text{ by the inequality established above for all } n \in \mathbb{N}.$

Next, we show $\{f_n\}$ is bounded in $L^p(E)$. ASSUME $\{||f_n||_p\}$ is unbounded. Then by Problem 8.18 [By possibly taking a subsequence of $\{f_n\}$ and relabeling, we may suppose $\{f_n|| \ge \alpha_n = n3^n$ for all n. By possibly taking a further subsequence and relabeling, we may suppose $||f_n||/\alpha_n \to \alpha \in [1, \infty]$. Define $g_n = (\alpha_n/||f_n||)f_n$ for each $n \in \mathbb{N}$. Then $\{g_n\}$ converges weakly to αf and $||g_n|| = n3^n$ for all $n \in \mathbb{N}$.], without loss of generality we suppose

$$\|f_n\|_p = n3^n \text{ for all } n \in \mathbb{N}$$
 (18)

(these f_n 's are the g_n 's of Problem 8.18).

(

Theorem 8.7 (continued 2)

Proof (continued). We now define a sequence of real numbers $\{\varepsilon_k\}$ inductively, as follows. Define $\varepsilon_1 = 1/3$, and

$$\varepsilon_{n+1} = \begin{cases} 1/3^{n+1} & \text{if } \int_E \left(\sum_{k=1}^n \varepsilon_k(f_k)^*\right) f_{n+1} \ge 0\\ -1/3^{n+1} & \text{otherwise.} \end{cases}$$

Then

$$\left| \int_{E} \left(\sum_{k=1}^{n} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| = \left| \int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n} + \int_{E} \varepsilon_{n}(f_{n})^{*} f_{n} \right|$$
$$= \left| \int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n} + \varepsilon_{n} \|f_{n}\|_{p} \right|$$
by Theorem 7.1...

Theorem 8.7 (continued 3)

Proof (continued).

$$\left| \int_{E} \left(\sum_{k=1}^{n} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| = \left| \int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| + |\varepsilon_{n}| ||f_{n}||_{p}$$

since $\int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n}$ and ε_{n} have the
same sign by the definition of ε_{n}
 $\geq |\varepsilon_{n}| ||f_{n}||_{p}$ dropping the first term
 $= \frac{1}{3^{n}} (n3^{n}) = n$ by (18).

Also, by the Hölder's Inequality (the "Moreover" part), $||(f_n)^*||_q = 1$ and so $||\varepsilon_n(f_n)^*||_q = 1/3^n$ for all $n \in \mathbb{N}$. The sequence of partial sums of the series $\sum_{k=1}^{\infty} \varepsilon_k(f_k)^*$ is a Cauchy sequence in $L^q(E)$. [Let $\varepsilon > 0$. The difference of partial sums is of the form $\sum_{k=m}^{n-1} \varepsilon_k(f_k)^*$ and

Theorem 8.7 (continued 3)

Proof (continued).

$$\left| \int_{E} \left(\sum_{k=1}^{n} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| = \left| \int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| + |\varepsilon_{n}| ||f_{n}||_{p}$$

since $\int_{E} \left(\sum_{k=1}^{n-1} \varepsilon_{k}(f_{k})^{*} \right) f_{n}$ and ε_{n} have the
same sign by the definition of ε_{n}
 $\geq |\varepsilon_{n}| ||f_{n}||_{p}$ dropping the first term
 $= \frac{1}{3^{n}} (n3^{n}) = n$ by (18).

Also, by the Hölder's Inequality (the "Moreover" part), $||(f_n)^*||_q = 1$ and so $||\varepsilon_n(f_n)^*||_q = 1/3^n$ for all $n \in \mathbb{N}$. The sequence of partial sums of the series $\sum_{k=1}^{\infty} \varepsilon_k(f_k)^*$ is a Cauchy sequence in $L^q(E)$. [Let $\varepsilon > 0$. The difference of partial sums is of the form $\sum_{k=m}^{n-1} \varepsilon_k(f_k)^*$ and

Theorem 8.7 (continued 4)

Proof (continued).

$$\left\|\sum_{k=m}^{n-1} \varepsilon_k(f_k)^*\right\|_q \le \sum_{k=m}^{n-1} \|\varepsilon_k(f_k)^*\|_q = \sum_{k=m}^{n-1} \frac{1}{3^k}$$
$$< \sum_{k=m}^{\infty} \frac{1}{3^k} = \frac{(1/3)^m}{1-(1/3)} = \frac{3}{2} \frac{1}{3^m} = \frac{1}{2 \cdot 3^{m-1}}.$$

For *N* sufficiently large, with $n > m \ge N$, $\frac{1}{2 \cdot 3^{m-1}}$ can be made less than ε .] Since $L^q(E)$ is complete (by the Riesz-Fischer Theorem), there is $g \in L^q(E)$ with $g = \sum_{k=1}^{\infty} \varepsilon_k(f_k)^*$. Fix $n \in \mathbb{N}$. then

$$\left|\int_{E} gf_{n}\right| = \left|\int_{E} \left(\sum_{k=1}^{\infty} \varepsilon_{k}(f_{k})^{*}\right) f_{n}\right|$$

Theorem 8.7 (continued 4)

Proof (continued).

$$\left\|\sum_{k=m}^{n-1} \varepsilon_k(f_k)^*\right\|_q \le \sum_{k=m}^{n-1} \|\varepsilon_k(f_k)^*\|_q = \sum_{k=m}^{n-1} \frac{1}{3^k}$$
$$< \sum_{k=m}^{\infty} \frac{1}{3^k} = \frac{(1/3)^m}{1-(1/3)} = \frac{3}{2} \frac{1}{3^m} = \frac{1}{2 \cdot 3^{m-1}}.$$

For *N* sufficiently large, with $n > m \ge N$, $\frac{1}{2 \cdot 3^{m-1}}$ can be made less than ε .] Since $L^q(E)$ is complete (by the Riesz-Fischer Theorem), there is $g \in L^q(E)$ with $g = \sum_{k=1}^{\infty} \varepsilon_k (f_k)^*$. Fix $n \in \mathbb{N}$. then

$$\left|\int_{E} gf_{n}\right| = \left|\int_{E} \left(\sum_{k=1}^{\infty} \varepsilon_{k}(f_{k})^{*}\right) f_{n}\right|$$

Theorem 8.7 (continued 5)

Proof (continued).

$$\begin{aligned} \left| \int_{E} gf_{n} \right| &\geq \left| \int_{E} \left(\sum_{k=1}^{n} \varepsilon_{k}(f_{k})^{*} \right) \right| - \left| \int_{E} \left(\sum_{k=n+1}^{\infty} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| \\ &\text{by the Triangle Inequality} \\ &\geq n - \left| \int_{E} \left(\sum_{k=n+1}^{\infty} \varepsilon_{k}(f_{k})^{*} \right) f_{n} \right| \text{ by the above inequality} \\ &= n - \left| \sum_{k=n+1}^{\infty} \int_{E} \varepsilon_{k}(f_{k})^{*} f_{n} \right| \text{ by the Lebesgue Dominated} \\ &\text{Convergence Theorem, since } \sum_{k=n+1}^{\infty} \varepsilon_{k}(f_{k})^{*} \in L^{q}(E) \\ &\geq n - \sum_{k=n+1}^{\infty} |\varepsilon_{k}| \left| \int_{E} (f_{k})^{*} f_{n} \right| \text{ by the Triangle Inequality} \end{aligned}$$

Theorem 8.7 (continued 6)

Proof (continued).

$$\begin{aligned} \left| \int_{E} gf_{n} \right| &\geq n - \sum_{k=n+1}^{\infty} \frac{1}{3^{k}} \| (f_{k})^{*} \|_{q} \| f_{n} \|_{p} \text{ by Hölder's Inequality} \\ &= n - \sum_{k=n+1}^{\infty} \frac{1}{3^{k}} n \text{ since } \| (f_{k})^{*} \|_{q} = 1 \text{ (by Theorem 7.1)} \\ &\text{ and since } \| f_{n} \|_{p} = n \text{ by above} \\ &= n - \left(\frac{1/3^{n+1}}{1 - 1/3} \right) n = n - \frac{1}{3^{n}} \frac{1}{2} n > \frac{n}{2}. \end{aligned}$$

So the sequence of real numbers $\{\int_E gf_n\}$ is not bounded. However, by hypothesis $\{f_n\} \rightarrow f$ in $L^p(E)$, so by Proposition 8.6 and Hölder's Inequality,

$$\lim_{n\to\infty}\int_E gf_n=\int_E gf\leq \|g\|_q\|f_n\|_p.$$

Theorem 8.7 (continued 6)

Proof (continued).

$$\begin{aligned} \left| \int_{E} gf_{n} \right| &\geq n - \sum_{k=n+1}^{\infty} \frac{1}{3^{k}} \| (f_{k})^{*} \|_{q} \| f_{n} \|_{p} \text{ by Hölder's Inequality} \\ &= n - \sum_{k=n+1}^{\infty} \frac{1}{3^{k}} n \text{ since } \| (f_{k})^{*} \|_{q} = 1 \text{ (by Theorem 7.1)} \\ &\text{ and since } \| f_{n} \|_{p} = n \text{ by above} \\ &= n - \left(\frac{1/3^{n+1}}{1 - 1/3} \right) n = n - \frac{1}{3^{n}} \frac{1}{2} n > \frac{n}{2}. \end{aligned}$$

So the sequence of real numbers $\{\int_E gf_n\}$ is not bounded. However, by hypothesis $\{f_n\} \rightarrow f$ in $L^p(E)$, so by Proposition 8.6 and Hölder's Inequality,

$$\lim_{n\to\infty}\int_E gf_n=\int_E gf\leq \|g\|_q\|f_n\|_p.$$

Theorem 8.7 (continued 7)

Theorem 8.7. Let f be a measurable set and $1 \le p < \infty$. Suppose $\{f_n\} \rightarrow f$ in $L^p(E)$. Then $\{f_n\}$ is bounded in $L^p(E)$ and $\|f\|_p \le \liminf \|f_n\|_p$.

Proof (continued). So $\{\int_E gf_n\}$ converges, and hence is bounded. This is a CONTRADICTION to the assumption that $\{||f_n||_p\}$ is not bounded. Hence $\{||f_n||_p\}$ is bounded; in other words, $\{f_n\}$ is bounded in $L^p(E)$. \Box

Corollary 8.8. Let *E* be a measurable set, $a \le p < \infty$, and *q* the conjugate of *p*. Suppose $\{f_n\}$ converges weakly to *f* in $L^p(E)$ ($\{f_n\} \rightharpoonup f$ in $L^p(E)$) and $\{g_n\}$ converges strongly to *g* in $L^q(E)$ ($\{g_n\} \rightarrow g$ in $L^1(E)$). Then $\lim_{n\to\infty} \left(\int_E g_n f_n\right) = \int_E gf$.

Proof. For each $n \in \mathbb{N}$, by linearity

$$\int_E g_n f_n - \int_E gf = \int_E (g_n - g)f_n + \int_E gf_n - \int_E gf.$$

By Theorem 8.7, $\{f_n\}$ is bounded in $L^p(E)$; that is $||f_n||_p \leq C$ for all $n \in \mathbb{N}$, for some given $C \geq 0$. So

$$\left| \int_{E} g_{n} f_{n} - \int_{E} gf \right| \leq \left| \int_{E} (g_{n} - g) f_{n} \right| + \left| \int_{E} gf_{n} - \int_{E} gf \right|$$
by the Triangle Inequality

Corollary 8.8. Let *E* be a measurable set, $a \le p < \infty$, and *q* the conjugate of *p*. Suppose $\{f_n\}$ converges weakly to *f* in $L^p(E)$ ($\{f_n\} \rightharpoonup f$ in $L^p(E)$) and $\{g_n\}$ converges strongly to *g* in $L^q(E)$ ($\{g_n\} \rightarrow g$ in $L^1(E)$). Then $\lim_{n\to\infty} \left(\int_E g_n f_n\right) = \int_E gf$.

Proof. For each $n \in \mathbb{N}$, by linearity

$$\int_E g_n f_n - \int_E gf = \int_E (g_n - g) f_n + \int_E gf_n - \int_E gf.$$

By Theorem 8.7, $\{f_n\}$ is bounded in $L^p(E)$; that is $||f_n||_p \leq C$ for all $n \in \mathbb{N}$, for some given $C \geq 0$. So

$$\left| \int_{E} g_{n} f_{n} - \int_{E} gf \right| \leq \left| \int_{E} (g_{n} - g) f_{n} \right| + \left| \int_{E} gf_{n} - \int_{E} gf \right| \text{ by the}$$

Triangle Inequality

Corollary 8.8 (continued)

Corollary 8.8. Let *E* be a measurable set, $a \le p < \infty$, and *q* the conjugate of *p*. Suppose $\{f_n\}$ converges weakly to *f* in $L^p(E)$ ($\{f_n\} \rightharpoonup f$ in $L^p(E)$) and $\{g_n\}$ converges strongly to *g* in $L^q(E)$ ($\{g_n\} \rightarrow g$ in $L^1(E)$). Then $\lim_{n\to\infty} \left(\int_E g_n f_n\right) = \int_E gf$.

Proof (continued).

$$\begin{aligned} \left| \int_{E} g_{n}f_{n} - \int_{E} gf \right| &\leq \|g_{n} - g\|_{q}\|f_{n}\|_{p} + \left| \int_{E} gf_{n} - \int_{E} gf \right| \\ &\leq C\|g_{n} - g\|_{q} + \left| \int_{E} gf_{n} - \int_{E} gf \right|. \end{aligned}$$

Since $\{g_n\} \to g$ in $L^q(E)$, then $\lim_{n\to\infty} ||g_n - g||_q = 0$, and by Proposition 8.6, $\lim_{n\to\infty} \int_E gf_n - \int_E gf$. The result then follows.

Proposition 8.9

Proposition 8.9. Let *E* be a measurable set, $1 \le p < \infty$, and let *q* be the conjugate of *p*. Assume \mathcal{F} is a subset of $L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$ and let *f* belong to $L^p(E)$. Then $\{f_n\} \rightharpoonup f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \left(\int_E f_n g\right) = \int_E fg$ for all $g \in \mathcal{F}$.

Proof. If $\{f_n\} \rightarrow f$ in $L^p(E)$, then by Proposition 8.6, $\lim_{n\to\infty} \int_E f_n g = \int_E f_g$ for all $g \in L^q(E)$, and since $\mathcal{F} \subset L^q(E)$, the result holds.

Proposition 8.9

Proposition 8.9. Let *E* be a measurable set, $1 \le p < \infty$, and let *q* be the conjugate of *p*. Assume \mathcal{F} is a subset of $L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$ and let *f* belong to $L^p(E)$. Then $\{f_n\} \rightharpoonup f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \left(\int_E f_n g\right) = \int_E fg$ for all $g \in \mathcal{F}$.

Proof. If $\{f_n\} \rightarrow f$ in $L^p(E)$, then by Proposition 8.6, $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in L^q(E)$, and since $\mathcal{F} \subset L^q(E)$, the result holds.

Next, suppose $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in \mathcal{F}$. Let $g_0 \in L^q(E)$. [We need to show the limit equality holds for g_0 .] Let $\varepsilon > 0$. We now find $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\left|\int_E f_n g - \int_E gg_0\right| < \varepsilon$.

Proposition 8.9

Proposition 8.9. Let *E* be a measurable set, $1 \le p < \infty$, and let *q* be the conjugate of *p*. Assume \mathcal{F} is a subset of $L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$ and let *f* belong to $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \left(\int_E f_n g\right) = \int_E fg$ for all $g \in \mathcal{F}$.

Proof. If $\{f_n\} \rightarrow f$ in $L^p(E)$, then by Proposition 8.6, $\lim_{n\to\infty} \int_E f_n g = \int_E f_g$ for all $g \in L^q(E)$, and since $\mathcal{F} \subset L^q(E)$, the result holds.

Next, suppose $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in \mathcal{F}$. Let $g_0 \in L^q(E)$. [We need to show the limit equality holds for g_0 .] Let $\varepsilon > 0$. We now find $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\left|\int_E f_n g - \int_E gg_0\right| < \varepsilon$.

Proposition 8.9 (continued 1)

Proof (continued). Notice for any $g \in L^q(E)$ and $n \in \mathbb{N}$ (by Hölder's Inequality):

$$\left|\int_{E} f_n g_0 - \int_{E} fg_0\right| = \left|\int_{E} (f_n - f)(g_0 - g) + \int_{E} (f_n - f)g\right|$$
$$\leq \|f_n - f\|_p \|g - g_0\|_q + \left|\int_{E} f_n g - \int_{E} fg\right|.$$

Since $\{f_n\}$ is bounded in $L^p(E)$, then $||f_n - f||_p$ is bounded. Since the linear space of \mathcal{F} is dense in $L^q(E)$, there is g in the linear space such that $||f_n - f||_p ||g - g_0||_q < \varepsilon/2$ for all $n \in \mathbb{N}$. Now g is in the linear space of \mathcal{F} , and the limit property hold on all of \mathcal{F} , so by linearity of integration (and convergence of sequences of real numbers), $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for g as described.

Proposition 8.9 (continued 1)

Proof (continued). Notice for any $g \in L^q(E)$ and $n \in \mathbb{N}$ (by Hölder's Inequality):

$$\left|\int_{E} f_n g_0 - \int_{E} fg_0\right| = \left|\int_{E} (f_n - f)(g_0 - g) + \int_{E} (f_n - f)g\right|$$
$$\leq \|f_n - f\|_p \|g - g_0\|_q + \left|\int_{E} f_n g - \int_{E} fg\right|.$$

Since $\{f_n\}$ is bounded in $L^p(E)$, then $||f_n - f||_p$ is bounded. Since the linear space of \mathcal{F} is dense in $L^q(E)$, there is g in the linear space such that $||f_n - f||_p ||g - g_0||_q < \varepsilon/2$ for all $n \in \mathbb{N}$. Now g is in the linear space of \mathcal{F} , and the limit property hold on all of \mathcal{F} , so by linearity of integration (and convergence of sequences of real numbers), $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for g as described.

Proposition 8.9 (continued 2)

Proposition 8.9. Let *E* be a measurable set, $1 \le p < \infty$, and let *q* be the conjugate of *p*. Assume \mathcal{F} is a subset of $L^q(E)$ whose linear span is dense in $L^q(E)$. Let $\{f_n\}$ be a bounded sequence in $L^p(E)$ and let *f* belong to $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n\to\infty} \left(\int_E f_n g\right) = \int_E fg$ for all $g \in \mathcal{F}$.

Proof (continued). So there is $N \in \mathbb{N}$ for which $\left|\int_{E} f_{n}g - \int_{E} fg\right| < \varepsilon/2$ for $n \geq N$. Therefore,

$$\left| \int_{E} f_{n}g_{0} - \int_{E} gg_{0} \right| \leq \|f_{n} - f\|_{p}\|g - g_{0}\|_{q} + \left| \int_{E} f_{n}g - \int_{E} fg \right|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ for } n \geq N.$$

That is, $\lim_{n\to\infty} \int_E f_n g_0 = \int_E f g_0$.

Theorem 8.10. Let *E* be a nonmeasurable set and $1 \le p < \infty$, suppose $\{f_n\}$ is a bounded sequence in $L^p(E)$ and *f* belongs to $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if for every measurable subset *A* of *E* we have $\lim_{n\to\infty} \int_A f_n = \int_A f$. If p > 1 (and so $q < \infty$) it is sufficient to consider sets *A* of finite measure.

Proof. Let

 $\mathcal{F} = \{\chi_A \mid A \text{ is a measurable subset of } E, \chi_A \in L^q(E)\}.$ The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^q(E)$. By Theorem 7.9, this span is dense in $L^q(E)$. By Proposition 8.9, $\{f_n\} \rightharpoonup f$ in $L^p(E)$ if and only is $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in \mathcal{F}$; that is, if and only if $\lim_{n\to\infty} \int_E f_n \chi_A = \int_E f \chi_A$ for all measurable $A \subset E$, or if and only if $\int_A f_n = \int_A f$ for all measurable $A \subset E$.

Theorem 8.10. Let *E* be a nonmeasurable set and $1 \le p < \infty$, suppose $\{f_n\}$ is a bounded sequence in $L^p(E)$ and *f* belongs to $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if for every measurable subset *A* of *E* we have $\lim_{n\to\infty} \int_A f_n = \int_A f$. If p > 1 (and so $q < \infty$) it is sufficient to consider sets *A* of finite measure.

Proof. Let

 $\mathcal{F} = \{\chi_A \mid A \text{ is a measurable subset of } E, \chi_A \in L^q(E)\}.$ The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^q(E)$. By Theorem 7.9, this span is dense in $L^q(E)$. By Proposition 8.9, $\{f_n\} \rightharpoonup f$ in $L^p(E)$ if and only is $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in \mathcal{F}$; that is, if and only if $\lim_{n\to\infty} \int_E f_n \chi_A = \int_E f \chi_A$ for all measurable $A \subset E$, or if and only if $\int_A f_n = \int_A f$ for all measurable $A \subset E$.

Notice that if $q \neq \infty$ (and $p \neq 1$), then the only characteristic functions in $L^q(E)$ are those of finite support. So if p = 1, we need only consider sets A of finite measure.

- 0

Theorem 8.10. Let *E* be a nonmeasurable set and $1 \le p < \infty$, suppose $\{f_n\}$ is a bounded sequence in $L^p(E)$ and *f* belongs to $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if for every measurable subset *A* of *E* we have $\lim_{n\to\infty} \int_A f_n = \int_A f$. If p > 1 (and so $q < \infty$) it is sufficient to consider sets *A* of finite measure.

Proof. Let

 $\mathcal{F} = \{\chi_A \mid A \text{ is a measurable subset of } E, \chi_A \in L^q(E)\}.$ The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^q(E)$. By Theorem 7.9, this span is dense in $L^q(E)$. By Proposition 8.9, $\{f_n\} \rightharpoonup f$ in $L^p(E)$ if and only is $\lim_{n\to\infty} \int_E f_n g = \int_E fg$ for all $g \in \mathcal{F}$; that is, if and only if $\lim_{n\to\infty} \int_E f_n \chi_A = \int_E f \chi_A$ for all measurable $A \subset E$, or if and only if $\int_A f_n = \int_A f$ for all measurable $A \subset E$. Notice that if $q \neq \infty$ (and $p \neq 1$), then the only characteristic functions in

 $L^{q}(E)$ are those of finite support. So if p = 1, we need only consider sets A of finite measure.

Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 . $Suppose <math>\{f_n\}$ is a bounded sequence in $L^p[a, b]$ and $f \in L^p[a, b]$. Then $\{f_n \parallel \rightarrow f \text{ in } L^p[a, b]$ if and only if $\lim_{n\to\infty} \int_a^x f_n = \int_a^x f$ for all $x \in [a, b]$.

Proof. Let $\mathcal{F} = \{\chi_{[a,x]} \mid x \in [a, b] \text{ and } \chi_{[a,x]} \in L^q([a, b])\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^q([a, b])$. By Theorem 7.10, this span is dense in $L^q([a, b])$.

Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 . $Suppose <math>\{f_n\}$ is a bounded sequence in $L^p[a, b]$ and $f \in L^p[a, b]$. Then $\{f_n \parallel \rightharpoonup f \text{ in } L^p[a, b]$ if and only if $\lim_{n\to\infty} \int_a^x f_n = \int_a^x f$ for all $x \in [a, b]$.

Proof. Let $\mathcal{F} = \{\chi_{[a,x]} \mid x \in [a, b] \text{ and } \chi_{[a,x]} \in L^q([a, b])\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^q([a, b])$. By Theorem 7.10, this span is dense in $L^q([a, b])$. By Proposition 8.9, $\{f_n\} \rightarrow f$ in $L^p([a, b])$ if and only if $\lim_{n\to\infty} \int_E f_n g - \int_E f_g$ for all $g \in \mathcal{F}$; that is, if and only if

$$\lim_{b\to\infty}\int_{[a,b]}f_n\chi_{[a,x]}=\int_{[a,b]}f\chi_{[a,x]} \text{ for all } x\in[a,b],$$

or if and only if

$$\lim_{n\to\infty}\int_{[a,x]}f_n=\int_{[a,x]}f \text{ for all } x\in[a,b].$$

Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 . $Suppose <math>\{f_n\}$ is a bounded sequence in $L^p[a, b]$ and $f \in L^p[a, b]$. Then $\{f_n \parallel \rightharpoonup f \text{ in } L^p[a, b]$ if and only if $\lim_{n\to\infty} \int_a^x f_n = \int_a^x f$ for all $x \in [a, b]$.

Proof. Let $\mathcal{F} = \{\chi_{[a,x]} \mid x \in [a, b] \text{ and } \chi_{[a,x]} \in L^q([a, b])\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^q([a, b])$. By Theorem 7.10, this span is dense in $L^q([a, b])$. By Proposition 8.9, $\{f_n\} \rightarrow f$ in $L^p([a, b])$ if and only if $\lim_{n\to\infty} \int_E f_n g - \int_E f_g$ for all $g \in \mathcal{F}$; that is, if and only if

$$\lim_{n\to\infty}\int_{[a,b]}f_n\chi_{[a,x]}=\int_{[a,b]}f\chi_{[a,x]} \text{ for all } x\in[a,b],$$

or if and only if

$$\lim_{n\to\infty}\int_{[a,x]}f_n=\int_{[a,x]}f \text{ for all } x\in[a,b].$$

Theorem 8.12. Let *E* be a measurable set and $1 . Suppose <math>\{f_n\}$ is a bounded sequence in $L^p(E)$ that converges pointwise a.e. on *E* to *f*. Then $\{f_n\} \rightharpoonup f$ in $L^p(E)$.

Proof. By Fatou's Lemma, since $\{f_n\} \to f$ pointwise, $\int_E |f|^p \leq \liminf \int_E |f|^p < \infty$ since $\{f_n\}$ is bounded in $L^p(E)$. So $f \in L^p(E)$. Let $A \subset E$ be measurable with $m(A) < \infty$. By Corollary 7.2, the sequence $\{f_n\}$ is uniformly integrable over E. By the Vitali Convergence Theorem, $\lim_{n\to\infty} \int_A f_n = \int_A f$ (since $m(A) < \infty$). So by Theorem 8.11, $\{f_n\} \to f$ weakly in $L^p(E)$. **Theorem 8.12.** Let *E* be a measurable set and $1 . Suppose <math>\{f_n\}$ is a bounded sequence in $L^p(E)$ that converges pointwise a.e. on *E* to *f*. Then $\{f_n\} \rightharpoonup f$ in $L^p(E)$.

Proof. By Fatou's Lemma, since $\{f_n\} \to f$ pointwise, $\int_E |f|^p \leq \liminf \int_E |f|^p < \infty$ since $\{f_n\}$ is bounded in $L^p(E)$. So $f \in L^p(E)$. Let $A \subset E$ be measurable with $m(A) < \infty$. By Corollary 7.2, the sequence $\{f_n\}$ is uniformly integrable over E. By the Vitali Convergence Theorem, $\lim_{n\to\infty} \int_A f_n = \int_A f$ (since $m(A) < \infty$). So by Theorem 8.11, $\{f_n\} \to f$ weakly in $L^p(E)$.

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n \to \infty} ||f_n||_p = ||f||_p$.

Proof for n = 2. Let n = 2 (the general proof is given in the supplement to the notes for Section 8.2). Let $\{f_n\}$ be a sequence in $L^2(E)$ such that $\{f_n\} \rightarrow f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$\|f_n - f\|_2^2 = \int_E |f_n - f|^2 = \int_E (f_n - f)^2 = \int_E (f_n^2 - 2f_n f + f^2)$$
$$= \int_E |f_n|^2 - 2\int_E f_n f + \int_E |f|^2.$$

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n \rightarrow \infty} ||f_n||_p = ||f||_p$. **Proof for** n = 2. Let n = 2 (the general proof is given in the supplement to the notes for Section 8.2). Let $\{f_n\}$ be a sequence in $L^2(E)$ such that

 $\{f_n\} \rightarrow f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$\|f_n - f\|_2^2 = \int_E |f_n - f|^2 = \int_E (f_n - f)^2 = \int_E (f_n^2 - 2f_n f + f^2)$$
$$= \int_E |f_n|^2 - 2\int_E f_n f + \int_E |f|^2.$$

We hypothesize that $\{f_n\} \rightarrow f$ in $L^2(E)$ and $f \in L^2(E)$, so by the Riesz Representation Theorem for T_f and the weak convergence hypothesis, we have $\lim \int_E f_n f = \int_E f^2$. So

$$\lim_{n \to \infty} \|f_n - f\|_2^2 = \lim_{n \to \infty} \left(\int_E |f_n|^2 - 2 \int_E f_n f + \int_E |f|^2 \right)$$

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n \rightarrow \infty} ||f_n||_p = ||f||_p$. **Proof for** n = 2. Let n = 2 (the general proof is given in the supplement to the notes for Section 8.2). Let $\{f_n\}$ be a sequence in $L^2(E)$ such that

 $\{f_n\} \rightarrow f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$\|f_n - f\|_2^2 = \int_E |f_n - f|^2 = \int_E (f_n - f)^2 = \int_E (f_n^2 - 2f_n f + f^2)$$
$$= \int_E |f_n|^2 - 2\int_E f_n f + \int_E |f|^2.$$

We hypothesize that $\{f_n\} \rightarrow f$ in $L^2(E)$ and $f \in L^2(E)$, so by the Riesz Representation Theorem for T_f and the weak convergence hypothesis, we have $\lim \int_E f_n f = \int_E f^2$. So

$$\lim_{n \to \infty} \|f_n - f\|_2^2 = \lim_{n \to \infty} \left(\int_E |f_n|^2 - 2 \int_E f_n f + \int_E |f|^2 \right)$$

Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then $\{f_n\} \rightarrow f$ in $L^p(E)$ if and only if $\lim_{n \to \infty} ||f_n||_p = ||f||_p$.

Proof for n = 2 (continued).

$$\lim_{n \to \infty} \|f_n - f\|_2^2 = \lim_{n \to \infty} \int_E |f_n|^2 - 2\lim_{n \to \infty} \int_E f_n f + \lim_{n \to \infty} \int_E |f|^2$$

and hence

$$\lim_{n \to \infty} \|f_n - f\|_2^2 = \lim_{n \to \infty} \int_E |f_n|^2 - 2 \int_E |f|^2 + \int_E |f|^2$$
$$= \lim_{n \to \infty} \int_E |f_n|^2 - \int_E |f|^2 = \lim_{n \to \infty} \|f_n\|_2^2 - \|f\|^2.$$

Real Analysis

So $\{f_n\} \to f$ with respect to the $L^2(E)$ norm if and only if $\lim_{n\to\infty} \|f_n\|_p = \|f\|_p$.

Corollary 8.13. Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then a subsequence of $\{f_n\}$ converges strongly in $L^p(E)$ to *f* if and only if $||f||_p = \liminf ||f_n||_p$.

Proof. If $||f||_p = \liminf ||f_n||_p$, then there is a subsequence $\{f_{n_k}\}$ for which $\lim_{k\to\infty} ||f_{n_k}||_p = ||f||_p$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\{f_{n_k}\}$ and conclude that $\{f_{n_k}\} \to f$ in $L^p(E)$ (i.e., "strongly").

Corollary 8.13. Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then a subsequence of $\{f_n\}$ converges strongly in $L^p(E)$ to *f* if and only if $||f||_p = \liminf ||f_n||_p$.

Proof. If $||f||_p = \liminf ||f_n||_p$, then there is a subsequence $\{f_{n_k}\}$ for which $\lim_{k\to\infty} ||f_{n_k}||_p = ||f||_p$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\{f_{n_k}\}$ and conclude that $\{f_{n_k}\} \to f$ in $L^p(E)$ (i.e., "strongly").

Conversely, if there is a subsequence $\{f_{n_k}\}$ that converges (strongly) to f in $L^p(E)$, then $\lim_{k\to\infty} ||f_{n_k}||_p = ||f||_p$. So $\liminf ||f_n||_p \le \lim ||f_{n_k}||_p = ||f||_p$. By Theorem 8.7, since $\{f_n\} \rightharpoonup f$ in $L^p(E)$ then $||f||_p \le \liminf ||f_n||_p$. The result now follows.

Corollary 8.13. Let *E* be a measurable set and $1 . Suppose <math>\{f_n\} \rightarrow f$ in $L^p(E)$. Then a subsequence of $\{f_n\}$ converges strongly in $L^p(E)$ to *f* if and only if $||f||_p = \liminf ||f_n||_p$.

Proof. If $||f||_p = \liminf ||f_n||_p$, then there is a subsequence $\{f_{n_k}\}$ for which $\lim_{k\to\infty} ||f_{n_k}||_p = ||f||_p$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\{f_{n_k}\}$ and conclude that $\{f_{n_k}\} \to f$ in $L^p(E)$ (i.e., "strongly").

Conversely, if there is a subsequence $\{f_{n_k}\}$ that converges (strongly) to f in $L^p(E)$, then $\lim_{k\to\infty} ||f_{n_k}||_p = ||f||_p$. So $\liminf ||f_n||_p \le \lim ||f_{n_k}||_p = ||f||_p$. By Theorem 8.7, since $\{f_n\} \rightharpoonup f$ in $L^p(E)$ then $||f||_p \le \liminf ||f_n||_p$. The result now follows.