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Lemma A

Lemma A

Lemma A. The limit of a weakly convergent sequence in Lp(E ) is unique,
1 ≤ p < ∞.

Proof. Let {fn} ⊂ Lp(E ) and suppose {fn} ⇀ f and {fn} ⇀ g . Recall
from Hölder’s Inequality that the conjugate of f ∈ Lp(E ) is
f ∗ = ‖f ‖1−p

p sgn(f )|f |p−1 ∈ Lq(E ) and
∫
E ff ∗ = ‖f ‖p.

So
(f − g)∗ ∈ Lq(E ) and there is T ∈ Lp(E )∗ such that

T (f ) =

∫
E
(f − g)f = lim

n→∞
T (fn) = lim

n→∞

(∫
E
(f − g)fn

)
= T (g) since {fn} ⇀ f and {fn} ⇀ g

=

∫
E
(f − g)∗g .

Rearranging,
∫
E (f − g)∗ −

∫
E (f − g)∗g = 0, or

∫
E (f − g)∗(f − g) = 0, or

(by the above observation), ‖f − g‖p = 0.
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Theorem 8.7

Theorem 8.7

Theorem 8.7. Let f be a measurable set and 1 ≤ p < ∞. Suppose
{fn} ⇀ f in Lp(E ). Then {fn} is bounded in Lp(E ) and
‖f ‖p ≤ lim inf ‖fn‖p.

Proof. Let q be the conjugate of p and f ∗ the conjugate function of f as
given in Hölder’s Inequality. For the claimed inequality, we have∫

E
f ∗fn =

∫
E
|f ∗fn| since sgn(f ) = sgn(f ∗)

≤ ‖f ∗‖q‖fn‖p by Hölder’s Inequality

= ‖fn‖p by Hölder’s Inequality (“Moreover”)

for all n ∈ N. Since {fn} ⇀ f in Lp(E ) and f ∗ ∈ Lq(E ), then by
Proposition 8.6 (with g = f ∗) we have
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Theorem 8.7

Theorem 8.7 (continued 1)

Proof (continued).

‖f ‖p =

∫
E

f ∗f by Hölder’s Inequality (“Moreover”)

= lim
n→∞

∫
E

f ∗fn by Proposition 8.6

≤ lim inf ‖fn‖p by the inequality established above for all n ∈ N.

Next, we show {fn} is bounded in Lp(E ). ASSUME {‖fn‖p} is unbounded.
Then by Problem 8.18 [By possibly taking a subsequence of {fn} and
relabeling, we may suppose {fn‖ ≥ αn = n3n for all n. By possibly taking
a further subsequence and relabeling, we may suppose
‖fn‖/αn → α ∈ [1,∞]. Define gn = (αn/‖fn‖)fn for each n ∈ N. Then
{gn} converges weakly to αf and ‖gn‖ = n3n for all n ∈ N.], without loss
of generality we suppose

‖fn‖p = n3n for all n ∈ N (18)

(these fn’s are the gn’s of Problem 8.18).
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Theorem 8.7

Theorem 8.7 (continued 2)

Proof (continued). We now define a sequence of real numbers {εk}
inductively, as follows. Define ε1 = 1/3, and

εn+1 =

{
1/3n+1 if

∫
E (
∑n

k=1 εk(fk)∗) fn+1 ≥ 0
−1/3n+1 otherwise.

Then∣∣∣∣∣
∫

E

(
n∑

k=1

εk(fk)∗

)
fn

∣∣∣∣∣ =

∣∣∣∣∣
∫

E

(
n−1∑
k=1

εk(fk)∗

)
fn +

∫
E

εn(fn)
∗fn

∣∣∣∣∣
=

∣∣∣∣∣
∫

E

(
n−1∑
k=1

εk(fk)∗

)
fn + εn‖fn‖p

∣∣∣∣∣
by Theorem 7.1. . .
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Theorem 8.7

Theorem 8.7 (continued 3)

Proof (continued).∣∣∣∣∣
∫

E

(
n∑

k=1

εk(fk)∗

)
fn

∣∣∣∣∣ =

∣∣∣∣∣
∫

E

(
n−1∑
k=1

εk(fk)∗

)
fn

∣∣∣∣∣+ |εn|‖fn‖p

since

∫
E

(
n−1∑
k=1

εk(fk)∗

)
fn and εn have the

same sign by the definition of εn

≥ |εn|‖fn‖p dropping the first term

=
1

3n
(n3n) = n by (18).

Also, by the Hölder’s Inequality (the “Moreover” part), ‖(fn)∗‖q = 1 and
so ‖εn(fn)

∗‖q = 1/3n for all n ∈ N. The sequence of partial sums of the
series

∑∞
k=1 εk(fk)∗ is a Cauchy sequence in Lq(E ). [Let ε > 0. The

difference of partial sums is of the form
∑n−1

k=m εk(fk)∗ and
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Theorem 8.7

Theorem 8.7 (continued 4)

Proof (continued).∥∥∥∥∥
n−1∑
k=m

εk(fk)∗

∥∥∥∥∥
q

≤
n−1∑
k=m

‖εk(fk)∗‖q =
n−1∑
k=m

1

3k

<

∞∑
k=m

1

3k
=

(1/3)m

1− (1/3)
=

3

2

1

3m
=

1

2 · 3m−1
.

For N sufficiently large, with n > m ≥ N, 1
2·3m−1 can be made less than ε.]

Since Lq(E ) is complete (by the Riesz-Fischer Theorem), there is
g ∈ Lq(E ) with g =

∑∞
k=1 εk(fk)∗. Fix n ∈ N. then∣∣∣∣∫

E
gfn

∣∣∣∣ =

∣∣∣∣∣
∫

E

( ∞∑
k=1

εk(fk)∗

)
fn

∣∣∣∣∣
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Theorem 8.7

Theorem 8.7 (continued 5)

Proof (continued).∣∣∣∣∫
E

gfn

∣∣∣∣ ≥

∣∣∣∣∣
∫

E

(
n∑

k=1

εk(fk)∗

)∣∣∣∣∣−
∣∣∣∣∣
∫

E

( ∞∑
k=n+1

εk(fk)∗

)
fn

∣∣∣∣∣
by the Triangle Inequality

≥ n −

∣∣∣∣∣
∫

E

( ∞∑
k=n+1

εk(fk)∗

)
fn

∣∣∣∣∣ by the above inequality

= n −

∣∣∣∣∣
∞∑

k=n+1

∫
E

εk(fk)∗fn

∣∣∣∣∣ by the Lebesgue Dominated

Convergence Theorem, since
∞∑

k=n+1

εk(fk)∗ ∈ Lq(E )

≥ n −
∞∑

k=n+1

|εk |
∣∣∣∣∫

E
(fk)∗fn

∣∣∣∣ by the Triangle Inequality
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Theorem 8.7

Theorem 8.7 (continued 6)

Proof (continued).∣∣∣∣∫
E

gfn

∣∣∣∣ ≥ n −
∞∑

k=n+1

1

3k
‖(fk)∗‖q‖fn‖p by Hölder’s Inequality

= n −
∞∑

k=n+1

1

3k
n since ‖(fk)∗‖q = 1 (by Theorem 7.1

and since ‖fn‖p = n by above

= n −
(

1/3n+1

1− 1/3

)
n = n − 1

3n

1

2
n >

n

2
.

So the sequence of real numbers {
∫
E gfn} is not bounded. However, by

hypothesis {fn} ⇀ f in Lp(E ), so by Proposition 8.6 and Hölder’s
Inequality,

lim
n→∞

∫
E

gfn =

∫
E

gf ≤ ‖g‖q‖fn‖p.
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Theorem 8.7

Theorem 8.7 (continued 7)

Theorem 8.7. Let f be a measurable set and 1 ≤ p < ∞. Suppose
{fn} ⇀ f in Lp(E ). Then {fn} is bounded in Lp(E ) and
‖f ‖p ≤ lim inf ‖fn‖p.

Proof (continued). So {
∫
E gfn} converges, and hence is bounded. This is

a CONTRADICTION to the assumption that {‖fn‖p} is not bounded.
Hence {‖fn‖p} is bounded; in other words, {fn} is bounded in Lp(E ).
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Corollary 8.8

Corollary 8.8

Corollary 8.8. Let E be a measurable set, a ≤ p < ∞, and q the
conjugate of p. Suppose {fn} converges weakly to f in Lp(E ) ({fn} ⇀ f in
Lp(E )) and {gn} converges strongly to g in Lq(E ) ({gn} → g in L1(E )).

Then lim
n→∞

(∫
E

gnfn

)
=

∫
E

gf .

Proof. For each n ∈ N, by linearity∫
E

gnfn −
∫

E
gf =

∫
E
(gn − g)fn +

∫
E

gfn −
∫

E
gf .

By Theorem 8.7, {fn} is bounded in Lp(E ); that is ‖fn‖p ≤ C for all
n ∈ N, for some given C ≥ 0. So∣∣∣∣∫

E
gnfn −

∫
E

gf

∣∣∣∣ ≤
∣∣∣∣∫

E
(gn − g)fn

∣∣∣∣+ ∣∣∣∣∫
E

gfn −
∫

E
gf

∣∣∣∣ by the

Triangle Inequality
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Corollary 8.8

Corollary 8.8 (continued)

Corollary 8.8. Let E be a measurable set, a ≤ p < ∞, and q the
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Proof (continued).∣∣∣∣∫
E

gnfn −
∫

E
gf

∣∣∣∣ ≤ ‖gn − g‖q‖fn‖p +

∣∣∣∣∫
E

gfn −
∫

E
gf

∣∣∣∣
≤ C‖gn − g‖q +

∣∣∣∣∫
E

gfn −
∫

E
gf

∣∣∣∣ .
Since {gn} → g in Lq(E ), then limn→∞ ‖gn − g‖q = 0, and by Proposition
8.6, limn→∞

∫
E gfn −

∫
E gf . The result then follows.
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Proposition 8.9

Proposition 8.9

Proposition 8.9. Let E be a measurable set, 1 ≤ p < ∞, and let q be the
conjugate of p. Assume F is a subset of Lq(E ) whose linear span is dense
in Lq(E ). Let {fn} be a bounded sequence in Lp(E ) and let f belong to

Lp(E ). Then {fn} ⇀ f in Lp(E ) if and only if lim
n→∞

(∫
E

fng

)
=

∫
E

fg for

all g ∈ F .

Proof. If {fn} ⇀ f in Lp(E ), then by Proposition 8.6,
limn→∞

∫
E fng =

∫
E fg for all g ∈ Lq(E ), and since F ⊂ Lq(E ), the result

holds.

Next, suppose limn→∞
∫
E fng =

∫
E fg for all g ∈ F . Let g0 ∈ Lq(E ). [We

need to show the limit equality holds for g0.] Let ε > 0. We now find
N ∈ N such that for all n ≥ N we have

∣∣∫
E fng −

∫
E gg0

∣∣ < ε.
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Proposition 8.9

Proposition 8.9 (continued 1)

Proof (continued). Notice for any g ∈ Lq(E ) and n ∈ N (by Hölder’s
Inequality):∣∣∣∣∫

E
fng0 −

∫
E

fg0

∣∣∣∣ = ∣∣∣∣∫
E
(fn − f )(g0 − g) +

∫
E
(fn − f )g

∣∣∣∣
≤ ‖fn − f ‖p‖g − g0‖q +

∣∣∣∣∫
E

fng −
∫

E
fg

∣∣∣∣ .
Since {fn} is bounded in Lp(E ), then ‖fn − f ‖p is bounded. Since the
linear space of F is dense in Lq(E ), there is g in the linear space such that
‖fn − f ‖p‖g − g0‖q < ε/2 for all n ∈ N. Now g is in the linear space of F ,
and the limit property hold on all of F , so by linearity of integration (and
convergence of sequences of real numbers), limn→∞

∫
E fng =

∫
E fg for g

as described.
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Proposition 8.9

Proposition 8.9 (continued 1)
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Since {fn} is bounded in Lp(E ), then ‖fn − f ‖p is bounded. Since the
linear space of F is dense in Lq(E ), there is g in the linear space such that
‖fn − f ‖p‖g − g0‖q < ε/2 for all n ∈ N. Now g is in the linear space of F ,
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∫
E fng =

∫
E fg for g

as described.
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Proposition 8.9

Proposition 8.9 (continued 2)

Proposition 8.9. Let E be a measurable set, 1 ≤ p < ∞, and let q be the
conjugate of p. Assume F is a subset of Lq(E ) whose linear span is dense
in Lq(E ). Let {fn} be a bounded sequence in Lp(E ) and let f belong to

Lp(E ). Then {fn} ⇀ f in Lp(E ) if and only if lim
n→∞

(∫
E

fng

)
=

∫
E

fg for

all g ∈ F .

Proof (continued). So there is N ∈ N for which
∣∣∫

E fng −
∫
E fg

∣∣ < ε/2
for n ≥ N. Therefore,∣∣∣∣∫

E
fng0 −

∫
E

gg0

∣∣∣∣ ≤ ‖fn − f ‖p‖g − g0‖q +

∣∣∣∣∫
E

fng −
∫

E
fg

∣∣∣∣
<

ε

2
+

ε

2
= ε for n ≥ N.

That is, limn→∞
∫
E fng0 =

∫
E fg0.
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Theorem 8.10

Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and 1 ≤ p < ∞, suppose
{fn} is a bounded sequence in Lp(E ) and f belongs to Lp(E ). Then
{fn} ⇀ f in Lp(E ) if and only if for every measurable subset A of E we
have limn→∞

∫
A fn =

∫
A f . If p > 1 (and so q < ∞) it is sufficient to

consider sets A of finite measure.

Proof. Let
F = {χA | A is a measurable subset of E , χA ∈ Lq(E )}.

The the linear span of F is the set of all simple functions on E which are
in Lq(E ). By Theorem 7.9, this span is dense in Lq(E ). By Proposition
8.9, {fn} ⇀ f in Lp(E ) if and only is limn→

∫
E fng =

∫
E fg for all g ∈ F ;

that is, if and only if limn→∞
∫
E fnχA =

∫
E f χA for all measurable A ⊂ E ,

or if and only if
∫
A fn =

∫
A f for all measurable A ⊂ E .

Notice that if q 6= ∞ (and p 6= 1), then the only characteristic functions in
Lq(E ) are those of finite support. So if p = 1, we need only consider sets
A of finite measure.
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Theorem 8.11

Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < ∞.
Suppose {fn} is a bounded sequence in Lp[a, b] and f ∈ Lp[a, b]. Then
{fn‖ ⇀ f in Lp[a, b] if and only if limn→∞

∫ x
a fn =

∫ x
a f for all x ∈ [a, b].

Proof. Let F = {χ[a,x] | x ∈ [a, b] and χ[a,x] ∈ Lq([a, b])}. Then the
linear span of F is the set of all step functions on E which are in
Lq([a, b]). By Theorem 7.10, this span is dense in Lq([a, b]).

By
Proposition 8.9, {fn} ⇀ f in Lp([a, b]) if and only if
limn→∞

∫
E fng −

∫
E fg for all g ∈ F ; that is, if and only if

lim
n→∞

∫
[a,b]

fnχ[a,x] =

∫
[a,b]

f χ[a,x] for all x ∈ [a, b],

or if and only if

lim
n→∞

∫
[a,x]

fn =

∫
[a,x]

f for all x ∈ [a, b].
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Theorem 8.12

Theorem 8.12

Theorem 8.12. Let E be a measurable set and 1 < p < ∞. Suppose {fn}
is a bounded sequence in Lp(E ) that converges pointwise a.e. on E to f .
Then {fn} ⇀ f in Lp(E ).

Proof. By Fatou’s Lemma, since {fn} → f pointwise,∫
E |f |

p ≤ lim inf
∫
E |f |

p < ∞ since {fn} is bounded in Lp(E ). So
f ∈ Lp(E ). Let A ⊂ E be measurable with m(A) < ∞. By Corollary 7.2,
the sequence {fn} is uniformly integrable over E . By the Vitali
Convergence Theorem, limn→∞

∫
A fn =

∫
A f (since m(A) < ∞). So by

Theorem 8.11, {fn} ⇀ f weakly in Lp(E ).
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let E be a measurable set and 1 < p < ∞. Suppose {fn} ⇀ f in Lp(E ).
Then {fn} → f in Lp(E ) if and only if lim

n→∞
‖fn‖p = ‖f ‖p.

Proof for n = 2. Let n = 2 (the general proof is given in the supplement
to the notes for Section 8.2). Let {fn} be a sequence in L2(E ) such that
{fn} ⇀ f . For each n ∈ N, by linearity of integration,

‖fn − f ‖2
2 =

∫
E
|fn − f |2 =

∫
E
(fn − f )2 =

∫
E
(f 2

n − 2fnf + f 2)

=

∫
E
|fn|2 − 2

∫
E

fnf +

∫
E
|f |2.

We hypothesize that {fn} ⇀ f in L2(E ) and f ∈ L2(E ), so by the Riesz
Representation Theorem for Tf and the weak convergence hypothesis, we
have lim

∫
E fnf =

∫
E f 2. So

lim
n→∞

‖fn − f ‖2
2 = lim

n→∞

(∫
E
|fn|2 − 2

∫
E

fnf +

∫
E
|f |2
)
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.
Let E be a measurable set and 1 < p < ∞. Suppose {fn} ⇀ f in Lp(E ).
Then {fn} → f in Lp(E ) if and only if lim

n→∞
‖fn‖p = ‖f ‖p.

Proof for n = 2 (continued).

lim
n→∞

‖fn − f ‖2
2 = lim

n→∞

∫
E
|fn|2 − 2 lim

n→∞

∫
E

fnf + lim
n→∞

∫
E
|f |2

and hence

lim
n→∞

‖fn − f ‖2
2 = lim

n→∞

∫
E
|fn|2 − 2

∫
E
|f |2 +

∫
E
|f |2

= lim
n→∞

∫
E
|fn|2 −

∫
E
|f |2 = lim

n→∞
‖fn‖2

2 − ‖f ‖2.

So {fn} → f with respect to the L2(E ) norm if and only if
limn→∞ ‖fn‖p = ‖f ‖p.
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Corollary 8.13

Corollary 8.13

Corollary 8.13. Let E be a measurable set and 1 < p < ∞. Suppose
{fn} ⇀ f in Lp(E ). Then a subsequence of {fn} converges strongly in
Lp(E ) to f if and only if ‖f ‖p = lim inf ‖fn‖p.

Proof. If ‖f ‖p = lim inf ‖fn‖p, then there is a subsequence {fnk
} for which

limk→∞ ‖fnk
‖p = ‖f ‖p. Since a subsequence of a weakly convergent

sequence if weakly convergent, we can apply the Radon Riesz Theorem to
{fnk

} and conclude that {fnk
} → f in Lp(E ) (i.e., “strongly”).

Conversely, if there is a subsequence {fnk
} that converges (strongly) to f

in Lp(E ), then limk→∞ ‖fnk
‖p = ‖f ‖p. So

lim inf ‖fn‖p ≤ lim ‖fnk
‖p = ‖f ‖p. By Theorem 8.7, since {fn} ⇀ f in

Lp(E ) then ‖f ‖p ≤ lim inf ‖fn‖p. The result now follows.
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