Real Analysis

Chapter 8. The L^{p} Spaces: Duality and Weak Convergence 8.2. Weak Sequential Convergence in L^{p} —Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma A
(2) Theorem 8.7
(3) Corollary 8.8
(4) Proposition 8.9
(5) Theorem 8.10
(6) Theorem 8.11
(7) Theorem 8.12
(8) Radon-Riesz Theorem for $p=2$
(9) Corollary 8.13

Lemma A

Lemma \mathbf{A}. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \leq p<\infty$.

Proof. Let $\left\{f_{n}\right\} \subset L^{P}(E)$ and suppose $\left\{f_{n}\right\} \rightharpoonup f$ and $\left\{f_{n}\right\} \rightharpoonup g$. Recall from Hölder's Inequality that the conjugate of $f \in L^{P}(E)$ is $f^{*}=\|f\|_{p}^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^{q}(E)$ and $\int_{E} f f^{*}=\|f\|_{p}$.

Lemma A

Lemma \mathbf{A}. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \leq p<\infty$.

Proof. Let $\left\{f_{n}\right\} \subset L^{p}(E)$ and suppose $\left\{f_{n}\right\} \rightharpoonup f$ and $\left\{f_{n}\right\} \rightharpoonup g$. Recall from Hölder's Inequality that the conjugate of $f \in L^{P}(E)$ is $f^{*}=\|f\|_{p}^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^{q}(E)$ and $\int_{E} f f^{*}=\|f\|_{p}$. So $(f-g)^{*} \in L^{q}(E)$ and there is $T \in L^{p}(E)^{*}$ such that

$$
\begin{aligned}
T(f) & =\int_{E}(f-g) f=\lim _{n \rightarrow \infty} T\left(f_{n}\right)=\lim _{n \rightarrow \infty}\left(\int_{E}(f-g) f_{n}\right) \\
& =T(g) \text { since }\left\{f_{n}\right\} \rightharpoonup f \text { and }\left\{f_{n}\right\} \rightharpoonup g \\
& =\int_{E}(f-g)^{*} g .
\end{aligned}
$$

Rearranging, $\int_{E}(f-g)^{*}-\int_{E}(f-g)^{*} g=0$, or $\int_{E}(f-g)^{*}(f-g)=0$, or (by the above observation), $\|f-g\|_{p}=0$.

Lemma A

Lemma \mathbf{A}. The limit of a weakly convergent sequence in $L^{p}(E)$ is unique, $1 \leq p<\infty$.

Proof. Let $\left\{f_{n}\right\} \subset L^{p}(E)$ and suppose $\left\{f_{n}\right\} \rightharpoonup f$ and $\left\{f_{n}\right\} \rightharpoonup g$. Recall from Hölder's Inequality that the conjugate of $f \in L^{P}(E)$ is $f^{*}=\|f\|_{p}^{1-p} \operatorname{sgn}(f)|f|^{p-1} \in L^{q}(E)$ and $\int_{E} f f^{*}=\|f\|_{p}$. So $(f-g)^{*} \in L^{q}(E)$ and there is $T \in L^{p}(E)^{*}$ such that

$$
\begin{aligned}
T(f) & =\int_{E}(f-g) f=\lim _{n \rightarrow \infty} T\left(f_{n}\right)=\lim _{n \rightarrow \infty}\left(\int_{E}(f-g) f_{n}\right) \\
& =T(g) \text { since }\left\{f_{n}\right\} \rightharpoonup f \text { and }\left\{f_{n}\right\} \rightharpoonup g \\
& =\int_{E}(f-g)^{*} g .
\end{aligned}
$$

Rearranging, $\int_{E}(f-g)^{*}-\int_{E}(f-g)^{*} g=0$, or $\int_{E}(f-g)^{*}(f-g)=0$, or (by the above observation), $\|f-g\|_{p}=0$.

Theorem 8.7

Theorem 8.7. Let f be a measurable set and $1 \leq p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$ and $\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}$.

Proof. Let q be the conjugate of p and f^{*} the conjugate function of f as given in Hölder's Inequality. For the claimed inequality, we have

$$
\begin{aligned}
\int_{E} f^{*} f_{n} & =\int_{E}\left|f^{*} f_{n}\right| \operatorname{since} \operatorname{sgn}(f)=\operatorname{sgn}\left(f^{*}\right) \\
& \leq\left\|f^{*}\right\|_{q}\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality } \\
& =\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality ("Moreover") }
\end{aligned}
$$

for all $n \in \mathbb{N}$. Since $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ and $f^{*} \in L^{q}(E)$, then by
Proposition 8.6 (with $g=f^{*}$) we have

Theorem 8.7

Theorem 8.7. Let f be a measurable set and $1 \leq p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$ and $\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}$.

Proof. Let q be the conjugate of p and f^{*} the conjugate function of f as given in Hölder's Inequality. For the claimed inequality, we have

$$
\begin{aligned}
\int_{E} f^{*} f_{n} & =\int_{E}\left|f^{*} f_{n}\right| \operatorname{since} \operatorname{sgn}(f)=\operatorname{sgn}\left(f^{*}\right) \\
& \leq\left\|f^{*}\right\|_{q}\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality } \\
& =\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality ("Moreover") }
\end{aligned}
$$

for all $n \in \mathbb{N}$. Since $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$ and $f^{*} \in L^{q}(E)$, then by Proposition 8.6 (with $g=f^{*}$) we have

Theorem 8.7 (continued 1)

Proof (continued).

$\|f\|_{p}=\int_{E} f^{*} f$ by Hölder's Inequality ("Moreover")
$=\lim _{n \rightarrow \infty} \int_{E} f^{*} f_{n}$ by Proposition 8.6
$\leq \lim \inf \left\|f_{n}\right\|_{p}$ by the inequality established above for all $n \in \mathbb{N}$.
Next, we show $\left\{f_{n}\right\}$ is bounded in $L^{P}(E)$. ASSUME $\left\{\left\|f_{n}\right\|_{p}\right\}$ is unbounded. Then by Problem 8.18 [By possibly taking a subsequence of $\left\{f_{n}\right\}$ and relabeling, we may suppose $\left\{f_{n} \| \geq \alpha_{n}=n 3^{n}\right.$ for all n. By possibly taking a further subsequence and relabeling, we may suppose $\left\|f_{n}\right\| / \alpha_{n} \rightarrow \alpha \in[1, \infty]$. Define $g_{n}=\left(\alpha_{n} /\left\|f_{n}\right\|\right) f_{n}$ for each $n \in \mathbb{N}$. Then $\left\{g_{n}\right\}$ converges weakly to αf and $\left\|g_{n}\right\|=n 3^{n}$ for all $n \in \mathbb{N}$.], without loss of generality we suppose

$$
\begin{equation*}
\left\|f_{n}\right\|_{p}=n 3^{n} \text { for all } n \in \mathbb{N} \tag{18}
\end{equation*}
$$

(these f_{n} 's are the g_{n} 's of Problem 8.18).

Theorem 8.7 (continued 1)

Proof (continued).

$$
\begin{aligned}
\|f\|_{p} & =\int_{E} f^{*} f \text { by Hölder's Inequality ("Moreover") } \\
& =\lim _{n \rightarrow \infty} \int_{E} f^{*} f_{n} \text { by Proposition } 8.6
\end{aligned}
$$

$\leq \lim \inf \left\|f_{n}\right\|_{p}$ by the inequality established above for all $n \in \mathbb{N}$.
Next, we show $\left\{f_{n}\right\}$ is bounded in $L^{P}(E)$. ASSUME $\left\{\left\|f_{n}\right\|_{p}\right\}$ is unbounded. Then by Problem 8.18 [By possibly taking a subsequence of $\left\{f_{n}\right\}$ and relabeling, we may suppose $\left\{f_{n} \| \geq \alpha_{n}=n 3^{n}\right.$ for all n. By possibly taking a further subsequence and relabeling, we may suppose $\left\|f_{n}\right\| / \alpha_{n} \rightarrow \alpha \in[1, \infty]$. Define $g_{n}=\left(\alpha_{n} /\left\|f_{n}\right\|\right) f_{n}$ for each $n \in \mathbb{N}$. Then $\left\{g_{n}\right\}$ converges weakly to αf and $\left\|g_{n}\right\|=n 3^{n}$ for all $n \in \mathbb{N}$.], without loss of generality we suppose

$$
\begin{equation*}
\left\|f_{n}\right\|_{p}=n 3^{n} \text { for all } n \in \mathbb{N} \tag{18}
\end{equation*}
$$

(these f_{n} 's are the g_{n} 's of Problem 8.18).

Theorem 8.7 (continued 2)

Proof (continued). We now define a sequence of real numbers $\left\{\varepsilon_{k}\right\}$ inductively, as follows. Define $\varepsilon_{1}=1 / 3$, and

$$
\varepsilon_{n+1}=\left\{\begin{array}{cl}
1 / 3^{n+1} & \text { if } \int_{E}\left(\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n+1} \geq 0 \\
-1 / 3^{n+1} & \text { otherwise. }
\end{array}\right.
$$

Then

$$
\begin{aligned}
\left|\int_{E}\left(\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|= & \left|\int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}+\int_{E} \varepsilon_{n}\left(f_{n}\right)^{*} f_{n}\right| \\
= & \left|\int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}+\varepsilon_{n}\left\|f_{n}\right\|_{p}\right| \\
& \quad \text { by Theorem 7.1... }
\end{aligned}
$$

Theorem 8.7 (continued 3)

Proof (continued).

$$
\begin{aligned}
\left|\int_{E}\left(\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|= & \left|\int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|+\left|\varepsilon_{n}\right|\left\|f_{n}\right\|_{p} \\
& \text { since } \int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n} \text { and } \varepsilon_{n} \text { have the }
\end{aligned}
$$

same sign by the definition of ε_{n}
$\geq\left|\varepsilon_{n}\right|\left\|f_{n}\right\|_{p}$ dropping the first term

$$
=\frac{1}{3^{n}}\left(n 3^{n}\right)=n \text { by }(18) .
$$

Also, by the Hölder's Inequality (the "Moreover" part), $\left\|\left(f_{n}\right)^{*}\right\|_{q}=1$ and so $\left\|\varepsilon_{n}\left(f_{n}\right)^{*}\right\|_{q}=1 / 3^{n}$ for all $n \in \mathbb{N}$. The sequence of partial sums of the series $\sum_{k=1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}$ is a Cauchy sequence in $L^{q}(E)$.
 difference of partial sums is of the form $\sum_{k=m}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}$ and

Theorem 8.7 (continued 3)

Proof (continued).

$$
\begin{aligned}
\left|\int_{E}\left(\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|= & \left|\int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|+\left|\varepsilon_{n}\right|\left\|f_{n}\right\|_{p} \\
& \text { since } \int_{E}\left(\sum_{k=1}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n} \text { and } \varepsilon_{n} \text { have the }
\end{aligned}
$$

same sign by the definition of ε_{n}
$\geq\left|\varepsilon_{n}\right|\left\|f_{n}\right\|_{p}$ dropping the first term

$$
=\frac{1}{3^{n}}\left(n 3^{n}\right)=n \text { by }(18) .
$$

Also, by the Hölder's Inequality (the "Moreover" part), $\left\|\left(f_{n}\right)^{*}\right\|_{q}=1$ and so $\left\|\varepsilon_{n}\left(f_{n}\right)^{*}\right\|_{q}=1 / 3^{n}$ for all $n \in \mathbb{N}$. The sequence of partial sums of the series $\sum_{k=1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}$ is a Cauchy sequence in $L^{q}(E)$. [Let $\varepsilon>0$. The difference of partial sums is of the form $\sum_{k=m}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}$ and

Theorem 8.7 (continued 4)

Proof (continued).

$$
\begin{aligned}
& \left\|\sum_{k=m}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right\|_{q} \leq \sum_{k=m}^{n-1}\left\|\varepsilon_{k}\left(f_{k}\right)^{*}\right\|_{q}=\sum_{k=m}^{n-1} \frac{1}{3^{k}} \\
& <\sum_{k=m}^{\infty} \frac{1}{3^{k}}=\frac{(1 / 3)^{m}}{1-(1 / 3)}=\frac{3}{2} \frac{1}{3^{m}}=\frac{1}{2 \cdot 3^{m-1}}
\end{aligned}
$$

For N sufficiently large, with $n>m \geq N, \frac{1}{2.3^{m-1}}$ can be made less than ε.] Since $L^{q}(E)$ is complete (by the Riesz-Fischer Theorem), there is $g \in L^{q}(E)$ with $g=\sum_{k=1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}$. Fix $n \in \mathbb{N}$. then

Theorem 8.7 (continued 4)

Proof (continued).

$$
\begin{aligned}
& \left\|\sum_{k=m}^{n-1} \varepsilon_{k}\left(f_{k}\right)^{*}\right\|_{q} \leq \sum_{k=m}^{n-1}\left\|\varepsilon_{k}\left(f_{k}\right)^{*}\right\|_{q}=\sum_{k=m}^{n-1} \frac{1}{3^{k}} \\
& <\sum_{k=m}^{\infty} \frac{1}{3^{k}}=\frac{(1 / 3)^{m}}{1-(1 / 3)}=\frac{3}{2} \frac{1}{3^{m}}=\frac{1}{2 \cdot 3^{m-1}}
\end{aligned}
$$

For N sufficiently large, with $n>m \geq N, \frac{1}{2 \cdot 3^{m-1}}$ can be made less than ε.] Since $L^{q}(E)$ is complete (by the Riesz-Fischer Theorem), there is $g \in L^{q}(E)$ with $g=\sum_{k=1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}$. Fix $n \in \mathbb{N}$. then

$$
\left|\int_{E} g f_{n}\right|=\left|\int_{E}\left(\sum_{k=1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|
$$

Theorem 8.7 (continued 5)

Proof (continued).

$$
\left|\int_{E} g f_{n}\right| \geq\left|\int_{E}\left(\sum_{k=1}^{n} \varepsilon_{k}\left(f_{k}\right)^{*}\right)\right|-\left|\int_{E}\left(\sum_{k=n+1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|
$$

by the Triangle Inequality
$\geq n-\left|\int_{E}\left(\sum_{k=n+1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*}\right) f_{n}\right|$ by the above inequality
$=n-\left|\sum_{k=n+1}^{\infty} \int_{E} \varepsilon_{k}\left(f_{k}\right)^{*} f_{n}\right|$ by the Lebesgue Dominated
Convergence Theorem, since $\sum_{k=n+1}^{\infty} \varepsilon_{k}\left(f_{k}\right)^{*} \in L^{q}(E)$
$\geq n-\sum_{k=n+1}^{\infty}\left|\varepsilon_{k}\right|\left|\int_{E}\left(f_{k}\right)^{*} f_{n}\right|$ by the Triangle Inequality

Theorem 8.7 (continued 6)

Proof (continued).

$$
\begin{aligned}
\left|\int_{E} g f_{n}\right| \geq & n-\sum_{k=n+1}^{\infty} \frac{1}{3^{k}}\left\|\left(f_{k}\right)^{*}\right\|_{q}\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality } \\
= & n-\sum_{k=n+1}^{\infty} \frac{1}{3^{k}} n \text { since }\left\|\left(f_{k}\right)^{*}\right\|_{q}=1 \text { (by Theorem } 7.1 \\
& \text { and since }\left\|f_{n}\right\|_{p}=n \text { by above } \\
= & n-\left(\frac{1 / 3^{n+1}}{1-1 / 3}\right) n=n-\frac{1}{3^{n}} \frac{1}{2} n>\frac{n}{2} .
\end{aligned}
$$

So the sequence of real numbers $\left\{\int_{E} g f_{n}\right\}$ is not bounded. However, by hypothesis $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$, so by Proposition 8.6 and Hölder's Inequality,

$$
\lim _{n \rightarrow \infty} \int_{E} g f_{n}=\int_{E} g f \leq\|g\| q\left\|f_{n}\right\|_{p} .
$$

Theorem 8.7 (continued 6)

Proof (continued).

$$
\begin{aligned}
\left|\int_{E} g f_{n}\right| \geq & n-\sum_{k=n+1}^{\infty} \frac{1}{3^{k}}\left\|\left(f_{k}\right)^{*}\right\|_{q}\left\|f_{n}\right\|_{p} \text { by Hölder's Inequality } \\
= & n-\sum_{k=n+1}^{\infty} \frac{1}{3^{k}} n \text { since }\left\|\left(f_{k}\right)^{*}\right\|_{q}=1 \text { (by Theorem } 7.1 \\
& \text { and since }\left\|f_{n}\right\|_{p}=n \text { by above } \\
= & n-\left(\frac{1 / 3^{n+1}}{1-1 / 3}\right) n=n-\frac{1}{3^{n}} \frac{1}{2} n>\frac{n}{2} .
\end{aligned}
$$

So the sequence of real numbers $\left\{\int_{E} g f_{n}\right\}$ is not bounded. However, by hypothesis $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$, so by Proposition 8.6 and Hölder's Inequality,

$$
\lim _{n \rightarrow \infty} \int_{E} g f_{n}=\int_{E} g f \leq\|g\|_{q}\left\|f_{n}\right\|_{\rho} .
$$

Theorem 8.7 (continued 7)

Theorem 8.7. Let f be a measurable set and $1 \leq p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$ and $\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}$.

Proof (continued). So $\left\{\int_{E} g f_{n}\right\}$ converges, and hence is bounded. This is a CONTRADICTION to the assumption that $\left\{\left\|f_{n}\right\|_{p}\right\}$ is not bounded. Hence $\left\{\left\|f_{n}\right\|_{p}\right\}$ is bounded; in other words, $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$.

Corollary 8.8

Corollary 8.8. Let E be a measurable set, $a \leq p<\infty$, and q the conjugate of p. Suppose $\left\{f_{n}\right\}$ converges weakly to f in $L^{p}(E)\left(\left\{f_{n}\right\} \rightharpoonup f\right.$ in $\left.L^{p}(E)\right)$ and $\left\{g_{n}\right\}$ converges strongly to g in $L^{q}(E)\left(\left\{g_{n}\right\} \rightarrow g\right.$ in $\left.L^{1}(E)\right)$.
Then $\lim _{n \rightarrow \infty}\left(\int_{E} g_{n} f_{n}\right)=\int_{E} g f$.
Proof. For each $n \in \mathbb{N}$, by linearity

$$
\int_{E} g_{n} f_{n}-\int_{E} g f=\int_{E}\left(g_{n}-g\right) f_{n}+\int_{E} g f_{n}-\int_{E} g f .
$$

By Theorem 8.7, $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$; that is $\left\|f_{n}\right\|_{p} \leq C$ for all $n \in \mathbb{N}$, for some given $C \geq 0$. So

Corollary 8.8

Corollary 8.8. Let E be a measurable set, $a \leq p<\infty$, and q the conjugate of p. Suppose $\left\{f_{n}\right\}$ converges weakly to f in $L^{P}(E)\left(\left\{f_{n}\right\} \rightharpoonup f\right.$ in $\left.L^{p}(E)\right)$ and $\left\{g_{n}\right\}$ converges strongly to g in $L^{q}(E)\left(\left\{g_{n}\right\} \rightarrow g\right.$ in $\left.L^{1}(E)\right)$. Then $\lim _{n \rightarrow \infty}\left(\int_{E} g_{n} f_{n}\right)=\int_{E} g f$.
Proof. For each $n \in \mathbb{N}$, by linearity

$$
\int_{E} g_{n} f_{n}-\int_{E} g f=\int_{E}\left(g_{n}-g\right) f_{n}+\int_{E} g f_{n}-\int_{E} g f .
$$

By Theorem 8.7, $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$; that is $\left\|f_{n}\right\|_{p} \leq C$ for all $n \in \mathbb{N}$, for some given $C \geq 0$. So
$\left|\int_{E} g_{n} f_{n}-\int_{E} g f\right| \leq\left|\int_{E}\left(g_{n}-g\right) f_{n}\right|+\left|\int_{E} g f_{n}-\int_{E} g f\right|$ by the
Triangle Inequality

Corollary 8.8 (continued)

Corollary 8.8. Let E be a measurable set, $a \leq p<\infty$, and q the conjugate of p. Suppose $\left\{f_{n}\right\}$ converges weakly to f in $L^{p}(E)\left(\left\{f_{n}\right\} \rightharpoonup f\right.$ in $\left.L^{P}(E)\right)$ and $\left\{g_{n}\right\}$ converges strongly to g in $L^{q}(E)\left(\left\{g_{n}\right\} \rightarrow g\right.$ in $\left.L^{1}(E)\right)$.
Then $\lim _{n \rightarrow \infty}\left(\int_{E} g_{n} f_{n}\right)=\int_{E} g f$.

Proof (continued).

$$
\begin{aligned}
\left|\int_{E} g_{n} f_{n}-\int_{E} g f\right| & \leq\left\|g_{n}-g\right\|_{q}\left\|f_{n}\right\|_{p}+\left|\int_{E} g f_{n}-\int_{E} g f\right| \\
& \leq C\left\|g_{n}-g\right\|_{q}+\left|\int_{E} g f_{n}-\int_{E} g f\right|
\end{aligned}
$$

Since $\left\{g_{n}\right\} \rightarrow g$ in $L^{q}(E)$, then $\lim _{n \rightarrow \infty}\left\|g_{n}-g\right\|_{q}=0$, and by Proposition 8.6, $\lim _{n \rightarrow \infty} \int_{E} g f_{n}-\int_{E} g f$. The result then follows.

Proposition 8.9

Proposition 8.9. Let E be a measurable set, $1 \leq p<\infty$, and let q be the conjugate of p. Assume \mathcal{F} is a subset of $L^{q}(E)$ whose linear span is dense in $L^{q}(E)$. Let $\left\{f_{n}\right\}$ be a bounded sequence in $L^{p}(E)$ and let f belong to $L^{P}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only if $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n} g\right)=\int_{E} f g$ for all $g \in \mathcal{F}$.

Proof. If $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$, then by Proposition 8.6, $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in L^{q}(E)$, and since $\mathcal{F} \subset L^{q}(E)$, the result holds.

Proposition 8.9

Proposition 8.9. Let E be a measurable set, $1 \leq p<\infty$, and let q be the conjugate of p. Assume \mathcal{F} is a subset of $L^{q}(E)$ whose linear span is dense in $L^{q}(E)$. Let $\left\{f_{n}\right\}$ be a bounded sequence in $L^{p}(E)$ and let f belong to $L^{P}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only if $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n} g\right)=\int_{E} f g$ for all $g \in \mathcal{F}$.

Proof. If $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$, then by Proposition 8.6, $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in L^{q}(E)$, and since $\mathcal{F} \subset L^{q}(E)$, the result holds.

Next, suppose $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in \mathcal{F}$. Let $g_{0} \in L^{q}(E)$. [We need to show the limit equality holds for g_{0}.] Let $\varepsilon>0$. We now find $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|\int_{E} f_{n} g-\int_{E} g g_{0}\right|<\varepsilon$.

Proposition 8.9

Proposition 8.9. Let E be a measurable set, $1 \leq p<\infty$, and let q be the conjugate of p. Assume \mathcal{F} is a subset of $L^{q}(E)$ whose linear span is dense in $L^{q}(E)$. Let $\left\{f_{n}\right\}$ be a bounded sequence in $L^{p}(E)$ and let f belong to $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n} g\right)=\int_{E} f g$ for all $g \in \mathcal{F}$.

Proof. If $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$, then by Proposition 8.6, $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in L^{q}(E)$, and since $\mathcal{F} \subset L^{q}(E)$, the result holds.

Next, suppose $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in \mathcal{F}$. Let $g_{0} \in L^{q}(E)$. [We need to show the limit equality holds for g_{0}.] Let $\varepsilon>0$. We now find $N \in \mathbb{N}$ such that for all $n \geq N$ we have $\left|\int_{E} f_{n} g-\int_{E} g g_{0}\right|<\varepsilon$.

Proposition 8.9 (continued 1)

Proof (continued). Notice for any $g \in L^{q}(E)$ and $n \in \mathbb{N}$ (by Hölder's Inequality):

$$
\begin{gathered}
\left|\int_{E} f_{n} g_{0}-\int_{E} f g_{0}\right|=\left|\int_{E}\left(f_{n}-f\right)\left(g_{0}-g\right)+\int_{E}\left(f_{n}-f\right) g\right| \\
\leq\left\|f_{n}-f\right\|_{p}\left\|g-g_{0}\right\|_{q}+\left|\int_{E} f_{n} g-\int_{E} f g\right| .
\end{gathered}
$$

Since $\left\{f_{n}\right\}$ is bounded in $L^{P}(E)$, then $\left\|f_{n}-f\right\|_{p}$ is bounded. Since the linear space of \mathcal{F} is dense in $L^{q}(E)$, there is g in the linear space such that $\left\|f_{n}-f\right\|_{p}\left\|g-g_{0}\right\|_{q}<\varepsilon / 2$ for all $n \in \mathbb{N}$. Now g is in the linear space of \mathcal{F}, and the limit property hold on all of \mathcal{F}, so by linearity of integration (and convergence of sequences of real numbers), $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for g as described.

Proposition 8.9 (continued 1)

Proof (continued). Notice for any $g \in L^{q}(E)$ and $n \in \mathbb{N}$ (by Hölder's Inequality):

$$
\begin{gathered}
\left|\int_{E} f_{n} g_{0}-\int_{E} f g_{0}\right|=\left|\int_{E}\left(f_{n}-f\right)\left(g_{0}-g\right)+\int_{E}\left(f_{n}-f\right) g\right| \\
\leq\left\|f_{n}-f\right\|_{p}\left\|g-g_{0}\right\|_{q}+\left|\int_{E} f_{n} g-\int_{E} f g\right| .
\end{gathered}
$$

Since $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$, then $\left\|f_{n}-f\right\|_{p}$ is bounded. Since the linear space of \mathcal{F} is dense in $L^{q}(E)$, there is g in the linear space such that $\left\|f_{n}-f\right\|_{p}\left\|g-g_{0}\right\|_{q}<\varepsilon / 2$ for all $n \in \mathbb{N}$. Now g is in the linear space of \mathcal{F}, and the limit property hold on all of \mathcal{F}, so by linearity of integration (and convergence of sequences of real numbers), $\lim _{n \rightarrow \infty} \int_{E} f_{n} g=\int_{E} f g$ for g as described.

Proposition 8.9 (continued 2)

Proposition 8.9. Let E be a measurable set, $1 \leq p<\infty$, and let q be the conjugate of p. Assume \mathcal{F} is a subset of $L^{q}(E)$ whose linear span is dense in $L^{q}(E)$. Let $\left\{f_{n}\right\}$ be a bounded sequence in $L^{p}(E)$ and let f belong to $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left(\int_{E} f_{n} g\right)=\int_{E} f g$ for all $g \in \mathcal{F}$.

Proof (continued). So there is $N \in \mathbb{N}$ for which $\left|\int_{E} f_{n} g-\int_{E} f g\right|<\varepsilon / 2$ for $n \geq N$. Therefore,

$$
\begin{aligned}
\left|\int_{E} f_{n} g_{0}-\int_{E} g g_{0}\right| & \leq\left\|f_{n}-f\right\|_{p}\left\|g-g_{0}\right\|_{q}+\left|\int_{E} f_{n} g-\int_{E} f g\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \text { for } n \geq N
\end{aligned}
$$

That is, $\lim _{n \rightarrow \infty} \int_{E} f_{n} g_{0}=\int_{E} f g_{0}$.

Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and $1 \leq p<\infty$, suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}(E)$ and f belongs to $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only if for every measurable subset A of E we have $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$. If $p>1$ (and so $q<\infty$) it is sufficient to consider sets A of finite measure.

Proof. Let

$$
\mathcal{F}=\left\{\chi_{A} \mid A \text { is a measurable subset of } E, \chi_{A} \in L^{q}(E)\right\} .
$$

The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^{q}(E)$. By Theorem 7.9, this span is dense in $L^{q}(E)$. By Proposition 8.9, $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only is $\lim _{n \rightarrow} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in \mathcal{F}$; that is, if and only if $\lim _{n \rightarrow \infty} \int_{E} f_{n} \chi_{A}=\int_{E} f \chi_{A}$ for all measurable $A \subset E$ or if and only if $\int_{A} f_{n}=\int_{A} f$ for all measurable $A \subset E$.

Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and $1 \leq p<\infty$, suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}(E)$ and f belongs to $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only if for every measurable subset A of E we have $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$. If $p>1$ (and so $q<\infty$) it is sufficient to consider sets A of finite measure.

Proof. Let

$$
\mathcal{F}=\left\{\chi_{A} \mid A \text { is a measurable subset of } E, \chi_{A} \in L^{q}(E)\right\} .
$$

The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^{q}(E)$. By Theorem 7.9, this span is dense in $L^{q}(E)$. By Proposition 8.9, $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$ if and only is $\lim _{n \rightarrow} \int_{E} f_{n} g=\int_{E}$ fg for all $g \in \mathcal{F}$; that is, if and only if $\lim _{n \rightarrow \infty} \int_{E} f_{n} \chi_{A}=\int_{E} f \chi_{A}$ for all measurable $A \subset E$, or if and only if $\int_{A} f_{n}=\int_{A} f$ for all measurable $A \subset E$.
Notice that if $q \neq \infty$ (and $p \neq 1$), then the only characteristic functions in $L^{q}(E)$ are those of finite support. So if $p=1$, we need only consider sets A of finite measure.

Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and $1 \leq p<\infty$, suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}(E)$ and f belongs to $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ if and only if for every measurable subset A of E we have $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$. If $p>1$ (and so $q<\infty$) it is sufficient to consider sets A of finite measure.

Proof. Let

$$
\mathcal{F}=\left\{\chi_{A} \mid A \text { is a measurable subset of } E, \chi_{A} \in L^{q}(E)\right\} .
$$

The the linear span of \mathcal{F} is the set of all simple functions on E which are in $L^{q}(E)$. By Theorem 7.9, this span is dense in $L^{q}(E)$. By Proposition 8.9, $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$ if and only is $\lim _{n \rightarrow} \int_{E} f_{n} g=\int_{E} f g$ for all $g \in \mathcal{F}$; that is, if and only if $\lim _{n \rightarrow \infty} \int_{E} f_{n} \chi_{A}=\int_{E} f \chi_{A}$ for all measurable $A \subset E$, or if and only if $\int_{A} f_{n}=\int_{A} f$ for all measurable $A \subset E$.
Notice that if $q \neq \infty$ (and $p \neq 1$), then the only characteristic functions in $L^{q}(E)$ are those of finite support. So if $p=1$, we need only consider sets A of finite measure.

Theorem 8.11

Theorem 8.11. Let $[a, b]$ be a closed, bounded interval and $1<p<\infty$. Suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}[a, b]$ and $f \in L^{p}[a, b]$. Then $\left\{f_{n} \| \rightharpoonup f\right.$ in $L^{p}[a, b]$ if and only if $\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}=\int_{a}^{x} f$ for all $x \in[a, b]$.

Proof. Let $\mathcal{F}=\left\{\chi_{[a, x]} \mid x \in[a, b]\right.$ and $\left.\chi_{[a, x]} \in L^{q}([a, b])\right\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^{q}([a, b])$. By Theorem 7.10, this span is dense in $L^{q}([a, b])$.

Theorem 8.11

Theorem 8.11. Let $[a, b]$ be a closed, bounded interval and $1<p<\infty$. Suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}[a, b]$ and $f \in L^{p}[a, b]$. Then $\left\{f_{n} \| \rightharpoonup f\right.$ in $L^{p}[a, b]$ if and only if $\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}=\int_{a}^{x} f$ for all $x \in[a, b]$.

Proof. Let $\mathcal{F}=\left\{\chi_{[a, x]} \mid x \in[a, b]\right.$ and $\left.\chi_{[a, x]} \in L^{q}([a, b])\right\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^{q}([a, b])$. By Theorem 7.10, this span is dense in $L^{q}([a, b])$. By Proposition 8.9, $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}([a, b])$ if and only if $\lim _{n \rightarrow \infty} \int_{E} f_{n} g-\int_{E} f g$ for all $g \in \mathcal{F}$; that is, if and only if

$$
\lim _{n \rightarrow \infty} \int_{[a, b]} f_{n} \chi_{[a, x]}=\int_{[a, b]} f \chi_{[a, x]} \text { for all } x \in[a, b] \text {, }
$$

or if and only if

$$
\lim _{n \rightarrow \infty} \int_{[a, x]} f_{n}=\int_{[a, x]} f \text { for all } x \in[a, b] .
$$

Theorem 8.11

Theorem 8.11. Let $[a, b]$ be a closed, bounded interval and $1<p<\infty$. Suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}[a, b]$ and $f \in L^{p}[a, b]$. Then $\left\{f_{n} \| \rightharpoonup f\right.$ in $L^{p}[a, b]$ if and only if $\lim _{n \rightarrow \infty} \int_{a}^{x} f_{n}=\int_{a}^{x} f$ for all $x \in[a, b]$.

Proof. Let $\mathcal{F}=\left\{\chi_{[a, x]} \mid x \in[a, b]\right.$ and $\left.\chi_{[a, x]} \in L^{q}([a, b])\right\}$. Then the linear span of \mathcal{F} is the set of all step functions on E which are in $L^{q}([a, b])$. By Theorem 7.10, this span is dense in $L^{q}([a, b])$. By Proposition 8.9, $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}([a, b])$ if and only if $\lim _{n \rightarrow \infty} \int_{E} f_{n} g-\int_{E} f g$ for all $g \in \mathcal{F}$; that is, if and only if

$$
\lim _{n \rightarrow \infty} \int_{[a, b]} f_{n} \chi_{[a, x]}=\int_{[a, b]} f \chi_{[a, x]} \text { for all } x \in[a, b]
$$

or if and only if

$$
\lim _{n \rightarrow \infty} \int_{[a, x]} f_{n}=\int_{[a, x]} f \text { for all } x \in[a, b] .
$$

Theorem 8.12

Theorem 8.12. Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{P}(E)$ that converges pointwise a.e. on E to f. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$.

Proof. By Fatou's Lemma, since $\left\{f_{n}\right\} \rightarrow f$ pointwise, $\int_{E}|f|^{P} \leq \liminf \int_{E}|f|^{P}<\infty$ since $\left\{f_{n}\right\}$ is bounded in $L^{P}(E)$. So $f \in L^{P}(E)$. Let $A \subset E$ be measurable with $m(A)<\infty$. By Corollary 7.2, the sequence $\left\{f_{n}\right\}$ is uniformly integrable over E. By the Vitali Convergence Theorem, $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f($ since $m(A)<\infty)$. So by Theorem 8.11, $\left\{f_{n}\right\} \rightharpoonup f$ weakly in $L^{P}(E)$.

Theorem 8.12

Theorem 8.12. Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\}$ is a bounded sequence in $L^{P}(E)$ that converges pointwise a.e. on E to f. Then $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$.

Proof. By Fatou's Lemma, since $\left\{f_{n}\right\} \rightarrow f$ pointwise, $\int_{E}|f|^{p} \leq \liminf \int_{E}|f|^{p}<\infty$ since $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$. So $f \in L^{P}(E)$. Let $A \subset E$ be measurable with $m(A)<\infty$. By Corollary 7.2, the sequence $\left\{f_{n}\right\}$ is uniformly integrable over E. By the Vitali Convergence Theorem, $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f($ since $m(A)<\infty)$. So by Theorem 8.11, $\left\{f_{n}\right\} \rightharpoonup f$ weakly in $L^{P}(E)$.

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightarrow f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.
Proof for $n=2$. Let $n=2$ (the general proof is given in the supplement to the notes for Section 8.2). Let $\left\{f_{n}\right\}$ be a sequence in $L^{2}(E)$ such that $\left\{f_{n}\right\} \rightharpoonup f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$
\begin{gathered}
\left\|f_{n}-f\right\|_{2}^{2}=\int_{E}\left|f_{n}-f\right|^{2}=\int_{E}\left(f_{n}-f\right)^{2}=\int_{E}\left(f_{n}^{2}-2 f_{n} f+f^{2}\right) \\
=\int_{E}\left|f_{n}\right|^{2}-2 \int_{E} f_{n} f+\int_{E}|f|^{2}
\end{gathered}
$$

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then $\left\{f_{n}\right\} \rightarrow f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.
Proof for $n=2$. Let $n=2$ (the general proof is given in the supplement to the notes for Section 8.2). Let $\left\{f_{n}\right\}$ be a sequence in $L^{2}(E)$ such that $\left\{f_{n}\right\} \rightharpoonup f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$
\begin{gathered}
\left\|f_{n}-f\right\|_{2}^{2}=\int_{E}\left|f_{n}-f\right|^{2}=\int_{E}\left(f_{n}-f\right)^{2}=\int_{E}\left(f_{n}^{2}-2 f_{n} f+f^{2}\right) \\
=\int_{E}\left|f_{n}\right|^{2}-2 \int_{E} f_{n} f+\int_{E}|f|^{2}
\end{gathered}
$$

We hypothesize that $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{2}(E)$ and $f \in L^{2}(E)$, so by the Riesz Representation Theorem for T_{f} and the weak convergence hypothesis, we have $\lim \int_{E} f_{n} f=\int_{E} f^{2}$. So

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$.
Then $\left\{f_{n}\right\} \rightarrow f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.
Proof for $n=2$. Let $n=2$ (the general proof is given in the supplement to the notes for Section 8.2). Let $\left\{f_{n}\right\}$ be a sequence in $L^{2}(E)$ such that $\left\{f_{n}\right\} \rightharpoonup f$. For each $n \in \mathbb{N}$, by linearity of integration,

$$
\begin{gathered}
\left\|f_{n}-f\right\|_{2}^{2}=\int_{E}\left|f_{n}-f\right|^{2}=\int_{E}\left(f_{n}-f\right)^{2}=\int_{E}\left(f_{n}^{2}-2 f_{n} f+f^{2}\right) \\
=\int_{E}\left|f_{n}\right|^{2}-2 \int_{E} f_{n} f+\int_{E}|f|^{2}
\end{gathered}
$$

We hypothesize that $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{2}(E)$ and $f \in L^{2}(E)$, so by the Riesz Representation Theorem for T_{f} and the weak convergence hypothesis, we have $\lim \int_{E} f_{n} f=\int_{E} f^{2}$. So

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}^{2}=\lim _{n \rightarrow \infty}\left(\int_{E}\left|f_{n}\right|^{2}-2 \int_{E} f_{n} f+\int_{E}|f|^{2}\right)
$$

Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$.
Then $\left\{f_{n}\right\} \rightarrow f$ in $L^{p}(E)$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.
Proof for $n=2$ (continued).

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}^{2}=\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|^{2}-2 \lim _{n \rightarrow \infty} \int_{E} f_{n} f+\lim _{n \rightarrow \infty} \int_{E}|f|^{2}
$$

and hence

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{2}^{2}=\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|^{2}-2 \int_{E}|f|^{2}+\int_{E}|f|^{2} \\
=\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|^{2}-\int_{E}|f|^{2}=\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{2}^{2}-\|f\|^{2}
\end{gathered}
$$

So $\left\{f_{n}\right\} \rightarrow f$ with respect to the $L^{2}(E)$ norm if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}=\|f\|_{p}$.

Corollary 8.13

Corollary 8.13. Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then a subsequence of $\left\{f_{n}\right\}$ converges strongly in $L^{p}(E)$ to f if and only if $\|f\|_{p}=\liminf \left\|f_{n}\right\|_{p}$.

Proof. If $\|f\|_{p}=\liminf \left\|f_{n}\right\|_{p}$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ for which $\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\left\{f_{n_{k}}\right\}$ and conclude that $\left\{f_{n_{k}}\right\} \rightarrow f$ in $L^{P}(E)$ (i.e., "strongly").

Corollary 8.13

Corollary 8.13. Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then a subsequence of $\left\{f_{n}\right\}$ converges strongly in $L^{p}(E)$ to f if and only if $\|f\|_{p}=\lim \inf \left\|f_{n}\right\|_{p}$.

Proof. If $\|f\|_{p}=\liminf \left\|f_{n}\right\|_{p}$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ for which $\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\left\{f_{n_{k}}\right\}$ and conclude that $\left\{f_{n_{k}}\right\} \rightarrow f$ in $L^{p}(E)$ (i.e., "strongly").

Conversely, if there is a subsequence $\left\{f_{n_{k}}\right\}$ that converges (strongly) to f in $L^{P}(E)$, then $\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. So $\liminf \left\|f_{n}\right\|_{p} \leq \lim \left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. By Theorem 8.7, since $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ then $\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}$. The result now follows.

Corollary 8.13

Corollary 8.13. Let E be a measurable set and $1<p<\infty$. Suppose $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{p}(E)$. Then a subsequence of $\left\{f_{n}\right\}$ converges strongly in $L^{p}(E)$ to f if and only if $\|f\|_{p}=\lim \inf \left\|f_{n}\right\|_{p}$.

Proof. If $\|f\|_{p}=\liminf \left\|f_{n}\right\|_{p}$, then there is a subsequence $\left\{f_{n_{k}}\right\}$ for which $\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. Since a subsequence of a weakly convergent sequence if weakly convergent, we can apply the Radon Riesz Theorem to $\left\{f_{n_{k}}\right\}$ and conclude that $\left\{f_{n_{k}}\right\} \rightarrow f$ in $L^{p}(E)$ (i.e., "strongly").

Conversely, if there is a subsequence $\left\{f_{n_{k}}\right\}$ that converges (strongly) to f in $L^{p}(E)$, then $\lim _{k \rightarrow \infty}\left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. So $\lim \inf \left\|f_{n}\right\|_{p} \leq \lim \left\|f_{n_{k}}\right\|_{p}=\|f\|_{p}$. By Theorem 8.7, since $\left\{f_{n}\right\} \rightharpoonup f$ in $L^{P}(E)$ then $\|f\|_{p} \leq \lim \inf \left\|f_{n}\right\|_{p}$. The result now follows.

