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Lemma A

Lemma A. The limit of a weakly convergent sequence in LP(E) is unique,
1< p< o0
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Lemma A

Lemma A

Lemma A. The limit of a weakly convergent sequence in LP(E) is unique,
1< p< o0

Proof. Let {f,} C LP(E) and suppose {f,} — f and {f,} — g. Recall
from Holder's Inequality that the conjugate of f € LP(E) is
f* = |Ifllp Psgn(f)IFIP~ € LIYE) and [g fF* = [f]|,.
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Lemma A

Lemma A. The limit of a weakly convergent sequence in LP(E) is unique,
1< p< o0

Proof. Let {f,} C LP(E) and suppose {f,} — f and {f,} — g. Recall
from Holder's Inequality that the conjugate of f € LP(E) is

£ = |F I Psgn()|fP* € LI(E) and [, fF* = || So

(f —g)* € LY(E) and there is T € LP(E)* such that

T = [(-ar=jim ()= im ([ (- 01
~ T(g) since {fy} — F and (£}~ g

= /E(f -&)'e

Rearranging, [(f —g)" — [c(f —g)'g =0, or [c(f—g)"(f—g)=0,or
(by the above observation), ||f — g/, = 0. O
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Theorem 8.7

Theorem 8.7. Let f be a measurable set and 1 < p < co. Suppose
{fo} = f in LP(E). Then {f,} is bounded in LP(E) and
[Fllp < liminf [ £5]] .
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Theorem 8.7

Theorem 8.7. Let f be a measurable set and 1 < p < co. Suppose
{fo} = f in LP(E). Then {f,} is bounded in LP(E) and
[Fllp < liminf [ £5]] .

Proof. Let g be the conjugate of p and f* the conjugate function of f as
given in Holder's Inequality. For the claimed inequality, we have

[ 7 = [ 17 since sgn(r) = ssn(r)
E E

£ llqll fallp by Holder's Inequality

IN

= ||fy]|p by Holder's Inequality (“Moreover")

for all n € N. Since {f,} — f in LP(E) and f* € L9(E), then by
Proposition 8.6 (with g = f*) we have
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Theorem 8.7 (continued 1)

Proof (continued).

Ifll, = / f*f by Holder's Inequality (“Moreover”)
E

n—o0

= lim /f*f,, by Proposition 8.6
E

< liminf ||f;]|, by the inequality established above for all n € N.
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Theorem 8.7 (continued 1)

Proof (continued).

Ifll, = / f*f by Holder's Inequality (“Moreover”)
E

n—o0

= lim /f*f,, by Proposition 8.6
E

IN

liminf ||f,||, by the inequality established above for all n € N.

Next, we show {f,} is bounded in LP(E). ASSUME {||f,||,} is unbounded.
Then by Problem 8.18 [By possibly taking a subsequence of {f,} and
relabeling, we may suppose {f,|| > a,, = n3" for all n. By possibly taking
a further subsequence and relabeling, we may suppose

lfall/an — a € [1,00]. Define g, = (an/||fal|)fn for each n € N. Then
{gn} converges weakly to af and ||gn|| = n3" for all n € N.], without loss

of generality we suppose
||fallp = n3" for all n € N (18)

(these f,'s are the g,'s of Problem 8.18).
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Theorem 8.7 (continued 2)

Proof (continued). We now define a sequence of real numbers {e,}
inductively, as follows. Define ¢ =1/3, and

ot Je (ke ek(f)) fara 2 0
1T —1/3m1 otherwise.

Then

o)

/E<nzlfk(fk)*> fn+/E€n(fn)*fn

1

1
= ‘/ (Zak(fk) > fo + enllfallp

by Theorem 7.1...
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Theorem 8.7 (continued 3)

Proof (continued).

/E <k2i1 6k(fk)*> fn

+ "Snwfn”p

n—1
E \k=1

n—1
since / <Z ek(fk)*> f, and €, have the
E \k=1

same sign by the definition of ¢,

> |en|||fallp dropping the first term
1

Also, by the Holder's Inequality (the “Moreover” part), ||(f,)*||q =1 and
so |len(fa)*|lg = 1/3" for all n € N. The sequence of partial sums of the
series Y oo 1 ex(fi)* is a Cauchy sequence in LI(E).
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Theorem 8.7 (continued 3)

Proof (continued).

/E <k2i1 6k(fk)*> fn

+ "Snwfn”p

n—1
E \k=1

n—1
since / <Z ek(fk)*> f, and €, have the
E \k=1

same sign by the definition of ¢,

> |en|||fallp dropping the first term
1

Also, by the Holder's Inequality (the “Moreover” part), ||(f,)*||q =1 and
so |len(fa)*|lg = 1/3" for all n € N. The sequence of partial sums of the
series Y oo ex(fi)* is a Cauchy sequence in L(E). [Let € > 0. The
difference of partial sums is of the form ZZ;},’ ek(fx)* and
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Theorem 8.7 (continued 4)

Proof (continued).

n—1
§ ek(fi)”
k=m

n—1

< Z (8l = 3 35 :

1/3)m™ 31 1
<Z3k_1— (1/3)  23m  2.3m-L’

For N sufficiently large, with n > m > N, 5—=— can be made less than ¢|

v23m
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Theorem 8.7 (continued 4)

Proof (continued).

n—1
E ek(fi)”
k=m

n—1

< Z (8l = 3 35 :

1/3)m™ 31 1
<Z3k_1— (1/3)  23m  2.3m-L’

For N sufficiently large, with n > m > N, T#*l can be made less than ]
Since L9(E) is complete (by the Riesz-Fischer Theorem), there is
g € LI(E) with g = Y72, ex(fi)*. Fix n € N. then

ng (Zakfk )
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Theorem 8.7 (continued 5)

Proof (continued).

gfal > /(szk(fk)*> _ / ( Z Ek(fk)*> fa
E E \k=1 E \k=n+1
by the Triangle Inequality
> n— / ( > gk(fk)*> f,| by the above inequality
E \k=n+1
= Z /sk (fx)*fa| by the Lebesgue Dominated
k=n+1
Convergence Theorem, since Z ex(f)" € LI(E)
k=n+1
> n-— Z 5k\/ fn| by the Triangle Inequality

k=n+1
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Theorem 8.7 (continued 6)

Proof (continued).

= 1
/ng” = Z 37”(fk)*Hq||anp by Holder's Inequality
k=n+1
= n— Y spnsince |[(£i)"llg = 1 (by Theorem 7.1
k=n+1

and since ||f,||, = n by above

n 1/3n+1 n=n iln>ﬁ
1-1/3) 312 2
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Theorem 8.7 (continued 6)

Proof (continued).

1

/ng” = Z 37”(fk)*Hq||fn||p by Holder's Inequality
k=n+1

= n— Y spnsince |[(£i)"llg = 1 (by Theorem 7.1
k=n+1

and since ||f,||, = n by above

= n 1/3m n=n iln>ﬁ

B 1-1/3) 32" T 27
So the sequence of real numbers {fE gfn} is not bounded. However, by
hypothesis {f,} — f in LP(E), so by Proposition 8.6 and Hdlder's

Inequality,
nm/az/ygmmmp
n—oo E E
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Theorem 8.7

Theorem 8.7 (continued 7)

Theorem 8.7. Let f be a measurable set and 1 < p < co. Suppose
{fa} — f in LP(E). Then {f,} is bounded in LP(E) and
I£llp < timinf £,

Proof (continued). So { [ gf,} converges, and hence is bounded. This is
a CONTRADICTION to the assumption that {||f,||,} is not bounded.

Hence {||f4||p} is bounded; in other words, {f,} is bounded in LP(E). [

Real Analysis
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Corollary 8.8

Corollary 8.8

Corollary 8.8. Let E be a measurable set, a < p < o0, and g the

conjugate of p. Suppose {f,} converges weakly to f in LP(E) ({fo} — f in
LP(E)) and {g,} converges strongly to g in LY(E) ({g.} — g in L*(E)).

Then lim </ g,,fn> :/gf.
n—oo E E

Real Analysis February 25, 2023 12 / 22



Corollary 8.8

Corollary 8.8. Let E be a measurable set, a < p < o0, and g the
conjugate of p. Suppose {f,} converges weakly to f in LP(E) ({fo} — f in
LP(E)) and {g,} converges strongly to g in LY(E) ({g.} — g in L*(E)).

Then lim </ g,,fn> :/gf.
n—oo E E

Proof. For each n € N, by linearity

/gnfn—/gf:/(gn—g)fn+/gfn—/gf-
E E E E E

By Theorem 8.7, {f,} is bounded in LP(E); that is ||f,]|, < C for all

n € N, for some given C > 0. So
/gnfn—/gf' < /(gn—g)fn /gfn—/gf’ by the
E E E E E
Triangle Inequality
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Corollary 8.8 (continued)

Corollary 8.8. Let E be a measurable set, a < p < 00, and g the
conjugate of p. Suppose {f,} converges weakly to f in LP(E) ({fo} — f in
LP(E)) and {gn} converges strongly to g in LY(E) ({gn} — g in L1(E)).

Then lim </ g,,f,,> :/gf.
n—oo E E

Proof (continued).

/gnfn—/gf‘
E E

IN

e — ellallfllo + \/ gfn—/gf‘

E E
/gf,,—/gf‘.
E E

Since {gn} — g in LI(E), then lim,_. ||gr — &|lq = 0, and by Proposition
8.6, lim,—oc [£ &fn — [ &f. The result then follows. O

IN

Cllgn —gllq +
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Proposition 8.9

Proposition 8.9

Proposition 8.9. Let E be a measurable set, 1 < p < oo, and let g be the
conjugate of p. Assume F is a subset of L9(E) whose linear span is dense
in LY(E). Let {f,} be a bounded sequence in LP(E) and let f belong to

LP(E). Then {f,} — f in LP(E) if and only if lim </ fn > :/ fg for
n—oo E E
all g € F.

Real Analysis Rty 25, g W 22



Proposition 8.9

Proposition 8.9. Let E be a measurable set, 1 < p < oo, and let g be the
conjugate of p. Assume F is a subset of L9(E) whose linear span is dense
in LY(E). Let {f,} be a bounded sequence in LP(E) and let f belong to

LP(E). Then {f,} — f in LP(E) if and only if lim </ fn > :/ fg for
n—oo E E
all g € F.

Proof. If {f,} — f in LP(E), then by Proposition 8.6,
limp—oo [¢ fng = [ fg for all g € LY(E), and since F C L9(E), the result
holds.
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Proposition 8.9

Proposition 8.9. Let E be a measurable set, 1 < p < oo, and let g be the
conjugate of p. Assume F is a subset of L9(E) whose linear span is dense
in LY(E). Let {f,} be a bounded sequence in LP(E) and let f belong to

LP(E). Then {f,} — f in LP(E) if and only if lim </ fn > :/ fg for
n—oo E E
all g € F.

Proof. If {f,} — f in LP(E), then by Proposition 8.6,
limp—oo [¢ fng = [ fg for all g € LY(E), and since F C L9(E), the result
holds.

Next, suppose lim,_.c [¢fng = [ fg forall g € F. Let go € LI(E). [We
need to show the limit equality holds for go.] Let £ > 0. We now find
N € N such that for all n > N we have | [ f.g — [ ggo| < e.
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Proposition 8.9

Proposition 8.9 (continued 1)

Proof (continued). Notice for any g € L9(E) and n € N (by Holder's
Inequality):

/Ef,,go—/Efgo :’/E(fn—f)(go—gH/E(fn—f)g‘

<t~ Flplle ~ lla-+ | [ o - [ 1]
E E
Since {f,} is bounded in LP(E), then ||f, — f||, is bounded.
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Proposition 8.9 (continued 1)

Proof (continued). Notice for any g € L9(E) and n € N (by Holder's
Inequality):

/Ef,,go—/Efgo :’/E(fn—f)(go—gH/E(fn—f)g‘

< I1fs = Fllllg = gollq + \/ e | fg\.
E E

Since {f,} is bounded in LP(E), then ||f, — f||, is bounded. Since the
linear space of F is dense in L9(E), there is g in the linear space such that
Ilfo — fllpllg — &ollq < €/2 for all n € N. Now g is in the linear space of F,
and the limit property hold on all of F, so by linearity of integration (and
convergence of sequences of real numbers), lim,_.o, [ f,g = [ fg for g
as described.
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Proposition 8.9 (continued 2)

Proposition 8.9. Let E be a measurable set, 1 < p < oo, and let g be the
conjugate of p. Assume F is a subset of L9(E) whose linear span is dense
in LI9(E). Let {f,} be a bounded sequence in LP(E) and let f belong to

LP(E). Then {fo} — f in LP(E) if and only if lim </ f,,g) :/ fg for
n—oo E E
all g € F.

Proof (continued). So there is N € N for which | [ fag — [ fg| < /2
for n > N. Therefore,

'/ fngo—/ggo
E E

< rfn—fupug—go||q+]/ e [ fg\
E E

<§+g:€fornZN.

That is, limp_s fE fngo = fE fgo. -
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Theorem 8.10

Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and 1 < p < 00, suppose
{f,} is a bounded sequence in LP(E) and f belongs to LP(E). Then
{f} — f in LP(E) if and only if for every measurable subset A of E we

have limp_oo [y fa = [4f. If p>1 (and so g < o0) it is sufficient to
consider sets A of finite measure.
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Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and 1 < p < 00, suppose
{f,} is a bounded sequence in LP(E) and f belongs to LP(E). Then
{f} — f in LP(E) if and only if for every measurable subset A of E we
have limp oo [4fo= [4f. If p>1 (and so g < o0) it is sufficient to
consider sets A of finite measure.

Proof. Let

F ={xa | Ais a measurable subset of E, x4 € LY(E)}.
The the linear span of F is the set of all simple functions on E which are
in LY(E). By Theorem 7.9, this span is dense in L9(E). By Proposition
8.9, {fa} — fin LP(E) if and only is lim,_. [ f,g = [ fg for all g € F;
that is, if and only if lim,_ [ foxa = [¢ fxa for all measurable A C E,
or if and only if [, f, = [, f for all measurable A C E.
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Theorem 8.10

Theorem 8.10. Let E be a nonmeasurable set and 1 < p < 00, suppose
{f,} is a bounded sequence in LP(E) and f belongs to LP(E). Then
{f} — f in LP(E) if and only if for every measurable subset A of E we
have limp oo [4fo= [4f. If p>1 (and so g < o0) it is sufficient to
consider sets A of finite measure.

Proof. Let

F ={xa | Ais a measurable subset of E, x4 € LY(E)}.
The the linear span of F is the set of all simple functions on E which are
in LY(E). By Theorem 7.9, this span is dense in L9(E). By Proposition
8.9, {fa} — fin LP(E) if and only is lim,_. [ f,g = [ fg for all g € F;
that is, if and only if lim,_ [ foxa = [¢ fxa for all measurable A C E,
or if and only if [, f, = [, f for all measurable A C E.

Notice that if g # oo (and p # 1), then the only characteristic functions in
L9(E) are those of finite support. So if p =1, we need only consider sets
A of finite measure. ]
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Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < oo.
Suppose {f,} is a bounded sequence in LP[a, b] and f € LP[a, b]. Then
{fall = f in LP[a, b] if and only if limy_.o [ f, = [ f for all x € [a, b].
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Theorem 8.11
Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < oo.

Suppose {f,} is a bounded sequence in LP[a, b] and f € LP[a, b]. Then
{fall = f in LP[a, b] if and only if limy_.o [ f, = [ f for all x € [a, b].

Proof. Let 7 = {X[sx | X € [a, b] and X5, € L9([a, b])}. Then the
linear span of F is the set of all step functions on E which are in
L9([a, b]). By Theorem 7.10, this span is dense in L9([a, b]).

Real Analysis February 25, 2023 18 / 22



Theorem 8.11

Theorem 8.11. Let [a, b] be a closed, bounded interval and 1 < p < oo.
Suppose {f,} is a bounded sequence in LP[a, b] and f € LP[a, b]. Then
{fall = f in LP[a, b] if and only if limy_.o [ f, = [ f for all x € [a, b].
Proof. Let 7 = {X[sx | X € [a, b] and X5, € L9([a, b])}. Then the
linear span of F is the set of all step functions on E which are in

L9([a, b]). By Theorem 7.10, this span is dense in L9([a, b]). By
Proposition 8.9, {f,} — f in LP([a, b]) if and only if

limp—oo [¢ fng — [ fg for all g € F; thatis, if and only if

lim / foX[ax] = / fX[a,x for all x € [a, b],
=00 Jla,b] [a,b]

)

or if and only if

lim / fn= / f for all x € [a, b).
=00 Jlax] [a,x]
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Theorem 8.12

Theorem 8.12. Let E be a measurable set and 1 < p < co. Suppose {f,}

is a bounded sequence in LP(E) that converges pointwise a.e. on E to f.
Then {f,} — fin LP(E).
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Theorem 8.12

Theorem 8.12. Let E be a measurable set and 1 < p < co. Suppose {f,}

is a bounded sequence in LP(E) that converges pointwise a.e. on E to f.
Then {f,} — fin LP(E).

Proof. By Fatou's Lemma, since {f,} — f pointwise,

JefIP <liminf [ |f|P < oo since {f,} is bounded in LP(E). So

f € LP(E). Let A C E be measurable with m(A) < co. By Corollary 7.2,
the sequence {f,} is uniformly integrable over E. By the Vitali
Convergence Theorem, lim,_. [, fn = [, f (since m(A) < c0). So by
Theorem 8.11, {f,} — f weakly in LP(E). O
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let E be a measurable set and 1 < p < co. Suppose {f,} — f in LP(E).
Then {f,} — f in LP(E) if and only if lim ||f,]|, = ||f]l,-
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem

The Radon-Riesz Theorem.
Let E be a measurable set and 1 < p < co. Suppose {f,} — f in LP(E).
Then {f,} — f in LP(E) if and only if lim ||f,]|, = ||f]l,-

Proof for n = 2. Let n = 2 (the general proof is given in the supplement
to the notes for Section 8.2). Let {f,} be a sequence in L2(E) such that
{fa} — f. For each n € N, by linearity of integration,

f=fB= [ 1= P = [ (=P = [(2 =265+ )
/]f|2—2/ff+/\f]2

Real Analysis
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem

The Radon-Riesz Theorem.

Let E be a measurable set and 1 < p < co. Suppose {f,} — f in LP(E).
Then {f,} — f in LP(E) if and only if nIer;o fallo = Il p-

Proof for n = 2. Let n = 2 (the general proof is given in the supplement
to the notes for Section 8.2). Let {f,} be a sequence in L2(E) such that
{fa} — f. For each n € N, by linearity of integration,

f=fB= [ 1= P = [ (=P = [(2 =265+ )
/]f|2—2/ff+/\f]2

We hypothesize that {f,} — f in L?(E) and f € L?(E), so by the Riesz
Representation Theorem for Tr and the weak convergence hypothesis, we
have lim [ fof = [ 2. So

im s~ FB = lim </|f\2—2/ff+/f!2>
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Radon-Riesz Theorem for p = 2

Radon-Riesz Theorem (continued)

The Radon-Riesz Theorem.

Let E be a measurable set and 1 < p < co. Suppose {f,} — f in LP(E).
Then {f,} — f in LP(E) if and only if lim ||f,]|, = ||f]l,-

Proof for n = 2 (continued).

lim ||f, — I3 = lim [ |[f]> =2 lim /fnf+ lim /\f!2
n—oo n—oo E n—oo E n—oo E

and hence

lim [[£,— F|2 = lim /|fn|2—2/\f]2+/ P
n—oo n—oo E E E

~ lim /\fnrz—/ 2= Tim (153 — [IF]2.
n—oo E E n—oo

So {f,} — f with respect to the L?(E) norm if and only if
imp—oo [[allp = [ f1l5- O
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Corollary 8.13

Corollary 8.13

Corollary 8.13. Let E be a measurable set and 1 < p < co. Suppose

{fa} — f in LP(E). Then a subsequence of {f,} converges strongly in
LP(E) to f if and only if ||f||, = liminf ||f,]|,.
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Corollary 8.13

Corollary 8.13. Let E be a measurable set and 1 < p < co. Suppose
{fa} — f in LP(E). Then a subsequence of {f,} converges strongly in
LP(E) to f if and only if ||f||, = liminf ||f,]|,.

Proof. If ||f||, = liminf ||f,||, then there is a subsequence {f,, } for which
limk—oo || fallp = || f]|p- Since a subsequence of a weakly convergent
sequence if weakly convergent, we can apply the Radon Riesz Theorem to
{fn.} and conclude that {f, } — f in LP(E) (i.e., “strongly”).
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Corollary 8.13

Corollary 8.13. Let E be a measurable set and 1 < p < co. Suppose
{fa} — f in LP(E). Then a subsequence of {f,} converges strongly in
LP(E) to f if and only if ||f||, = liminf ||f,]|,.

Proof. If ||f||, = liminf ||f,||, then there is a subsequence {f,, } for which
limk—oo || fallp = || f]|p- Since a subsequence of a weakly convergent
sequence if weakly convergent, we can apply the Radon Riesz Theorem to
{fn.} and conclude that {f, } — f in LP(E) (i.e., “strongly”).

Conversely, if there is a subsequence {f,, } that converges (strongly) to f
in LP(E), then limy_.oc ||fa,]lp = ||f||p- So

liminf ||f,|lp < lim||fy, ||, = ||f]|p. By Theorem 8.7, since {f,} — f in
LP(E) then ||f||, < liminf ||fy]|,. The result now follows. O
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