
Real Analysis

January 14, 2019
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Helly’s Theorem

Helly’s Theorem

Helly’s Theorem. Let X be a separable normed linear space and {Tn} a
sequence in its dual space X ∗ that is bounded. That is, there exists M ≥ 0
for which |Tn(f )| ≤ M‖f ‖ for all f ∈ X , for all n ∈ N. Then there is a
subsequence {Tnk

} of {Tn} and T ∈ X ∗ for which lim
k→∞

Tnk
(f ) = T (f ) for

all f ∈ X .

Proof. Let {fj}∞j=1 be a countable dense subset of X that is dense in X .
We now apply the sequence {Tn} to the sequence {fj}.

The sequence of
real numbers {Tn(f1)} is bounded by hypothesis. So, by the
Bolzano-Weierstrass Theorem, there is a strictly increasing sequence of
natural numbers (indices) {s(1, n)}∞n=1 and a number a1 ∈ R for which
limn→∞ Ts(1,n)(f1) = a1. By hypothesis, {Ts(1,n)(f2)}∞n=1 is bounded and
so again by Bolzano-Weierstrass there is a subsequence {s(2, n)}∞n=1 of
{s(1, n)}∞n=1 and a2 ∈ R for which limn→∞ Ts(2,n)(f2) = a2.
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Helly’s Theorem

Helly’s Theorem (continued 1)

Proof (continued). We inductively continue this process to produce a
countable collection of strictly increasing sequences of natural numbers
{{s(j , n)}∞n=1}∞j=1 and a sequence {aj}∞j=1 of real numbers such that
{s(j + 1, n)}∞n=1 is a subsequence of {s(j , n)}∞n=1 for all j ∈ N, and
limn→∞ Ts(j ,n)(fj) = aj for all j ∈ N.

For each k ∈ N, define nk = s(k, k). Then for each j ∈ N, {nk}∞k=j is a
subsequence of {s(j , k)}∞k=1 (because of the nestedness of the sequences
in terms of the j parameter). So limk→∞ Tnk

(fj) = aj for all j ∈ N.

Since{Tnk
} is bounded in X ∗ (that is, ‖Tnk

‖∗ ≤ M for all Tnk
), {Tnk

(f )}
is convergent (and therefore Cauchy) for each f ∈ {fj}, and since {fj} is
dense in X , then {Tnk

(f )} is Cauchy for all f ∈ X (by Problem 8.35). So,
for all f ∈ X , {Tnk

(f )}∞k=1 converges to some real number, say
limk→∞ Tnk

(f ) = T (f ). We now show that T is a bounded linear
functional.
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Helly’s Theorem

Helly’s Theorem (continued 2)

Helly’s Theorem. Let X be a separable normed linear space and {Tn} a
sequence in its dual space X ∗ that is bounded. That is, there exists M ≥ 0
for which |Tn(f )| ≤ M‖f ‖ for all f ∈ X , for all n ∈ N. Then there is a
subsequence {Tnk

} of {Tn} and T ∈ X ∗ for which lim
k→∞

Tnk
(f ) = T (f ) for

all f ∈ X .

Proof (continued). First,

T (αf + βg) = lim
k→∞

Tnk
(αf + βg) = lim

k→∞
(αTnk

(f ) + βTnk
(g))

= α lim
k→∞

Tnk
(f ) + β lim

k→∞
Tnk

(g) = αT (f ) + βT (g).

Next, |Tnk
(f )| ≤ M‖f ‖ for all k ∈ N and for all f ∈ X , so

|T (f )| = limk→∞ Tnk
(f )| ≤ M‖f ‖ for all f ∈ X , and so ‖T‖∗ ≤ M and T

is unbounded.
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Theorem 8.14

Theorem 8.14

Theorem 8.14. Let E be a measurable set and 1 < p < ∞. Then every
founded sequence in Lp(E ) has a subsequence that converges weakly in
Lp(E ) to a function in Lp(E ).

Proof. Let q be the conjugate of p. Let {fn} be a bounded sequence in
Lp(E ). Define X = Lq(E ).

For n ∈ N, define Tn on X as Tn(g) =
∫
E fng

for g ∈ X = Lq(E ). By Proposition 8.2 (with p and q interchanged) Tn is
a bounded linear functional on X and ‖Tn||∗ = ‖fn‖p. Since {fn} is
bounded in Lp(E ), then {Tn} is bounded in X ∗.

Moreover, by Theorem 7.11, since 1 < q < ∞, X = Lq(E ) is separable.
So, by Helly’s Theorem, there is a subsequence {Tnk

} and T ∈ X ∗ such
that limk→∞ Tnk

(g) = T (g) for all g ∈ X = Lq(E ). By the Riesz
Representation Theorem (with p and q interchanged), there is f ∈ Lp(E )
for which T (g) =

∫
E fg for all g ∈ X = Lq(E ).
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Theorem 8.14

Theorem 8.14 (continued)

Theorem 8.14. Let E be a measurable set and 1 < p < ∞. Then every
founded sequence in Lp(E ) has a subsequence that converges weakly in
Lp(E ) to a function in Lp(E ).

Proof (continued). But then we have that

lim
k→∞

Tnk
(g) = lim

k→∞

∫
E

fnk
g = T (g) =

∫
E

fg for all g ∈ X = Lq(E ).

By Proposition 8.6, {fnk
} converges weakly to f in Lp(E ).
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Theorem 8.15

Theorem 8.15

Theorem 8.15. Let E be a measurable set and 1 < p < ∞. Then
{f ∈ Lp(E ) | ‖f ‖p ≤ 1} is weakly sequentially compact in Lp(E ).

Proof. Let {fn} be a sequence in Lp(E ) for which ‖f ‖p ≤ 1 for all n ∈ N.
By Theorem 8.14, there is a subsequence {fnk

} which converges weakly to
f ∈ Lp(E ).

Moreover, ‖f ‖p ≤ 1, since by Theorem 8.7,
‖f ‖p ≤ lim inf ‖fn‖p ≤ 1. Therefore f ∈ {f ∈ Lp(E ) | ‖f ‖p ≤ 1}, and the
set is sequentially compact.
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