Real Analysis 1, MATH 5210

Homework 2, Sections 2.1 and 2.2

Due Friday September 19, 2014 at 1:30

Prove each of the following.

- **2.2.** Let m' be a set function defined for all sets in a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume m' is countably additive over countable disjoint collections of sets in \mathcal{A} . Prove that if there is a set A in the collection \mathcal{A} for which $m'(A) < \infty$, then $m'(\emptyset) = 0$.
- **2.3.** Let m' be a set function defined for all sets in a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume m' is countably additive over countable disjoint collections of sets in \mathcal{A} . Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of sets in \mathcal{A} . Prove that $m'(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m'(E_k)$.
- **2.6.** Let A be the set of irrational numbers in the interval [0,1]. Prove that $m^*(A) = 1$.
- **2.7.** Prove that for any bounded set E, there is a G_{δ} set G for which $E \subseteq G$ and $m^*(G) = m^*(E)$. Set G is called the *outer approximation* in Section 2.4. (In fact, this result also holds if set E is not bounded.)
- **2.9.** Prove that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$.