Real Analysis 1, MATH 5210, Fall 2020 Homework 6, 2.5. Countable Additivity, Continuity, and the Borel-Cantelli Lemma, 2.6. Nonmeasurable Sets, Solutions Due Sunday, October 18, by noon

- **2.28.** Prove that continuity of measure together with finite additivity of measure implies countable additivity.
- **Problem 2.6.A.** Show that if $E \in \mathcal{M}$ and $E \subset P$, then m(E) = 0. HINT: Let $E_i = E + r_i$, where $\mathbb{Q} \cap [0,1) = \{r_i\}_{i=1}^{\infty}$. Then $\{E_i\}_{i=1}^{\infty}$ is a disjoint sequence of measurable sets and $m(E_i) = m(E)$. Therefore $\sum m(E_i) = m(\cup E_i) \leq m([0,1))$.
- **Problem 2.6.B.** Show that if A is any set with $m^*(A) > 0$, then there is a nonmeasurable set $E \subset A$. HINT: If $A \subset [0,1)$, let $E_i = A \cap P_i$. The measurability of E_i implies $m(E_i) = 0$, while $\sum m^*(E_i) \ge m^*(A) > 0$.
- **Problem 2.6.C.** Give an example $\{E_i\}_{i=1}^{\infty}$ of a disjoint sequence of sets and $m^*(\cup E_i) < \sum m^*(E_i)$. Use set P and explain.