Real Analysis 2, MATH 5220

Homework 4, Section 7.2

Due Thursday February 26, 2015 at 2:15

- **7.12.** For $1 \le p < \infty$ and a sequence $a = (a_1, a_2, \ldots) \in \ell^p$, define T_a to be the function on the interval $[1, \infty)$ that takes the value a_k on [k, k+1), for $k = 1, 2, \ldots$ In parts (a) and (b) we give a proof of Hölder's Inequality for ℓ^p using Hölder's Inequality in $L^p[1, \infty)$.
 - (a) Show that $T_a \in L^p[1,\infty)$ and $||a||_p = ||T_a||_p$.
 - (b) Prove a Hölder's Inequality for ℓ^p .
- **7.12 (cont.)** In parts (c) and (d) we give a proof of Minkowski's Inequality for ℓ^p using Minkowski's Inequality in $L^p[1,\infty)$.
 - (c) For $a \in \ell^p$, define a^* , show $a^* \in \ell^q$, and that $\sum_{k=1}^{\infty} a_k a_k^* = ||a||_p$.
 - (d) Prove a Minkowski Inequality for ℓ^p . NOTE: The Minkowski Inequality allows us to conclude that ℓ^p is a normed linear space.
- **7.18.** Assume $m(E) < \infty$. For $f \in L^{\infty}(E)$, show that $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$. HINT: First show that $\limsup_{p\to\infty} \|f\|_p \le \|f\|_{\infty}$. Second, let $\varepsilon > 0$ and define $A = \{x \in E \mid |f| \ge \|f\|_{\infty} \varepsilon\}$. Show that $\liminf_{p\to\infty} \|f\|_p \ge \|f\|_{\infty} \varepsilon$.
- **7.7b.** (Bonus) Let $E = (0, \infty)$ and define $f(x) = \frac{x^{-1/2}}{1 + |\ln x|}$. Show that $f \in L^p(0, \infty)$ if and only if p = 2. NOTE: There is a typographical error on page 143 in the second example. The function that is given in the book can be shown to be in $L^p(1, \infty)$ for $2 \le p \le \infty$, and so the claim in the example is inaccurate.