Real Analysis 2, MATH 5220

Homework 5, Section 11.1 and 11.2

Due Friday March 20, 2015 at 3:00

- **11.3.** For a nonempty set X, let \mathcal{B} be a collection of subsets of X. Suppose \mathcal{B} is a base for a topology on X. Prove that
 - (i) \mathcal{B} covers X. That is, $X = \bigcup_{B \in \mathcal{B}} B$.
 - (ii) If B_1 and B_2 are in \mathcal{B} and $x \in B_1 \cap B_2$, then there is a set B in \mathcal{B} for which $x \in B \subseteq B_1 \cap B_2$.
- 11.5(i). Let E be a subset of a topological space X. A point $x \in X$ is an *interior point* of E provided there is a neighborhood of x that is contained in E. The collection of interior points of E is the *interior* of E, denoted int(E). Prove that int(E) is open if and only if E = int(E).
- 11.9. Prove that the collection of all intervals of the form [a, b), where a < b, is a base for a topology for the set of real numbers. The real numbers \mathbb{R} with this topology is called the *Sorgenfrey Line*. Prove that the Sorgenfrey line is Hausdorff (see Section 11.2—this part is Exercise 11.6(a)).
- **11.A.** Let $X = [0, 1] \cup \{0'\}$ and consider the sets of the form (α, β) , $[0, \gamma)$, $(\delta, 1]$, and $\{0'\} \cup (0, \eta)$ where $\alpha, \beta, \gamma, \delta, \eta \in (0, 1)$. Prove that the sets are a base for a topology on X and that this topology is Tychonoff but not Hausdorff.