Real Analysis 2, MATH 5220 Homework 7, Section 17.1

- 17.1. Let f be a nonnegative Lebesgue measurable function on \mathbb{R} . For each Lebesgue measurable subset E of \mathbb{R} , define $\mu(E) = \int_E f$. Show that μ is a measure on the σ -algebra of Lebesgue measurable sets. HINT: Show μ is nonnegative ("clearly"), $\mu(\emptyset) = 0$, and μ is countably additive. Notice that for $f \equiv 1$, μ is Lebesgue measure.
- 17.5. Let (X, \mathcal{M}, μ) be a measure space. the symmetric difference, $E_1 \triangle E_2$, of two subsets E_1 and E_2 of X is defined as $E_1 \triangle E_2 = (E_1 \setminus E_2) \cup (E_2 \setminus E_1)$.
 - (i) Show that if $E_1, E_2 \in \mathcal{M}$ and $\mu(E_1 \triangle E_2) = 0$, then $\mu(E_1) = \mu(E_2)$.
 - (ii) Show that if μ is complete and $E_1 \in \mathcal{M}$, then $E_2 \in \mathcal{M}$ if $\mu(E_1 \triangle E_2) = 0$.
 - HINT: For (ii), we have $E_1 \setminus E_1 \setminus E_2 = E_1 \cap E_2$ and $E_2 = (E_2 \setminus E_1) \cup (E_1 \cap E_2)$.

17.7. Let (X, \mathcal{M}) be a measurable space.

(i) If μ and ν are measures defined on \mathcal{M} , then the set function λ defined on \mathcal{M} by $\lambda(E) = \mu(E) + \nu(E)$ also is a measure, denoted $\lambda = \mu + \nu$.

(ii) [Bonus] If μ and ν are measures on \mathcal{M} and $\mu \geq \nu$ then there is a measure λ on \mathcal{M} for which $\mu = \nu + \lambda$. HINT: Define

$$\lambda(E) = \begin{cases} \mu(E) - \nu(E) & \text{if } \nu(E) < \infty \\ \sup\{\mu(F) - \nu(F)\} & \text{if } \nu(E) = \infty \end{cases}$$

where the supremum is taken over all $F \in \mathcal{M}$, $F \subset E$, and $\nu(E) < \infty$. Show (1) $\mu = \nu + \lambda$ on \mathcal{M} , (2) λ is finitely additive, and (3) λ is countably additive.

(iii) [Bonus] If ν is σ -finite, then the measure λ on (ii) is unique. HINT: This is easy for finite ν -measure sets. Use the σ -finiteness of ν to show this for arbitrary $E \in \mathcal{M}$.

(iv) [Bonus] In general, the measure λ of (ii) need not be unique, but there is always a smallest such λ . HINT: Use finite ν -measure sets to compare any two such λ and the fact that λ of (ii) is defined in terms of a least upper bound.