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Note. Georg Cantor (1845–1918) defined an infinite set as one for which there is a one-to-one

mapping from the set to a proper subset.

Note. We can use Cantor’s definition to show that N = {1, 2, 3, . . .} is an infinite set. The function

f : x → x + 1 sends N to N \ {1}. If we imagine N as a collection of points on the real line, then

the mapping can be illustrated as:

Such a mapping is called shifting to infinity. It is a rigid mapping (distances between corresponding

points are preserved—it is an isometry) and there is a point in N that is not in F (N) = N \ {1}.
That is, 1 has been “shifted to infinity” and lost in the rigid transformation.

Note. There is a story involving a hotel with a countably infinite number of rooms. Every room is

occupied. If a new person arrives, then they can be given a room if the person in room i moves to

room i + 1. In fact, an infinite number of new people can be added by having the person in room i

move to room 2i. This is sometimes called the “Hilbert Hotel.”

Note. Consider the unit circle in R2, C = {(x, y) | x2 + y2 = 1}. Create set N by taking the

point (1, 0), the point one unit of arc length away (in the counterclockwise direction), the point two

units of arc length away (counterclockwise), and so forth. Since the circumference of the circle is

irrational, the set N is infinite. Now decompose the circle into two disjoint sets C = N ∪ (C \N).

Now rigidly rotate N through one radian. This maps the nth point of N to the (n + 1)st point of

N . Leave C \N fixed. We have then taken C, broken it into two disjoint pieces, rigidly rearranged

the pieces, and produced a copy of C with a missing point (again, the point has been “shifted to

infinity”).
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Of course, we could shift any finite number of points to infinity in this way. We can also perform

similar tricks on the unit disk and “shift to infinity” line segments from the center to the edge of

the disk. These processes can be reversed to “shift from infinity” to produce extra points.

Note. We now perform a magic trick! We will break the interval [0, 1) into pieces, rigidly rearrange

the pieces, and create two copies of [0, 1).

Recall. We have partitioned [0, 1) into a countable number of disjoint sets {Pi}∞i=1 such that any

Pi can be rigidly translated into any Pj by adding an appropriate rational number (modulo 1):

Pi = Pj+̊qij for some qij ∈ Q ∩ [0, 1) where +̊ is as defined in Royden’s Real Analysis. We have

seen that ∪∞i=1Pi = [0, 1). This construction was originally done by Giuseppe Vitali (1874–1932) in

Sul problema della misura dei gruppi di punti di una retta Bologna: Tip, Gamberini e Parmeggiani

(1905). The set is often called the Vitali set. We now show that we can also have ∪∞i=1Pi = 2× [0, 1).

We now have two copies of each Pi, and can union them to produce two copies of [0, 1). We can

translate one copy to produce [0, 2) if you like. We can modify the mapping of even and odd indexed

Pis to produce any number of copies of [0, 1) (including an infinite number of copies), or an interval

of any length (including infinite, or all of R).
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Note. Informally, we can wrap [0, 1) around the unit circle (this requires a bit of stretching), and

use the above argument to create 2 circles from 1. . . or n circles from 1, or an infinite number of

circles from 1!

Note. The Banach-Tarski Theorem states [Wapner, p. 143]: “A solid ball may be separated into a

finite number of pieces and reassembled in such a way as to create two solid balls, each identical in

shape and volume to the original.” Wapner also comments (p. 45): “The Banach-Tarski Paradox

does not hold in the plane; a space of three or more dimensions is required.” We have seen similar

paradoxes for an interval and a disk, but our examples required an infinite number of pieces.

Note. Polish mathematician Stefan Banach (1892–1945), of “Banach space” fame, and Alfred

Tarski (1902–1983) published “On the Decomposition of Sets of Points in Respectively Congruent

Parts” (in French in Fundamenta Mathematicae 6) in 1924. Their work was heavily dependent on

ealier work of Vitali and Hausdorff.

Note. A nice, not-too-technical description of the proof of the Banach-Tarski Paradox is given in

Wapner’s book. We give a vague description of it here. First, we consider two rotations of the unit

sphere S = {(x, y, z) | x2 + y2 + z2 = 1}. One is a 180◦ rotation about the line x = z (call this σ),

the other a 120◦ rotation about the z-axis (call this τ).

By taking combinations of σ and τ , we can generate an infinite (countable) group G which maps S

onto itself. We then partition G into three pieces, G1, G2, and G3 (details on page 147 of Wapner).
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This is done is such a way that the following hold:

τG1 = G2

τ 2G1 = G3

σG1 = G2 ∪G3

Since each element of G is a type of rotation, then each such element has two fixed points associated

with it (the poles of the rotation). Denote the collection of all such poles as P . The group will

partition the remainder of the points, S \ P , into an uncountable number of orbits. Next, use the

Axiom of Choice to choose a representative of each of these orbits and call the resulting set C. Set

C is similar to the Vitali set from interval [0, 1). We now apply all of the permutations from the

three pieces of G to create a partition of the sphere. Apply the rotations of Gi to C to create set

Ki for i = 1, 2, 3. We have now partitioned the unit sphere into four pieces: S = K1 ∪K2 ∪K3 ∪P .

Because of the relationships between the Gis, we have the following relationships between the Kis:

τK1 = K2

τ 2K1 = K3

σK1 = K2 ∪K3

Note. That is, K1 can be rigidly rotated to give K2 (by τ), K3 (by τ 2), or K2 ∪K3 (by σ). When

one set can be rigidly rotated to give another, we say the sets are congruent. So we have

K1
∼= K2

∼= K3
∼= K2 ∪K3.

This is called the Hausdorff Paradox. That is, we have broken the sphere into three congruent

pieces, K1, K2, and K3, indicating that each piece is one-third of the sphere (actually, S \ P has

been partitioned, but remember that P is a “small” countable set). However, when we union two

of these disjoint pieces, K2 and K3, we would expect to get two-thirds of the sphere, but instead

get something which is again congruent to one-third of the sphere. Felix Hausdorff (1868–1942)

presented this in his Grundzüge der Mengenlehre in 1914.

Note. Now here’s the real trick! We use K2 ∪K3 as a “cutting template.” We place K2 ∪K3 on

K1 (which can be done since they are congruent) and cut K1 into two pieces—one piece congruent

to K2 and one piece congruent to K3. Next, do the same to K2 and K3. We then have three copies

of K2 and three copies of K3. One K2 can be rotated to give a K1 and one K3 can be rotated to
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give another K1. So, through partition and rotation, we have produced two copies each of K1, K2,

and K3. We now have produced from the unit sphere the following:

S = 2×K1 ∪ 2×K2 ∪ 2×K3 ∪ P.

We can produce one copy of S as S = K1 ∪K2 ∪K3 ∪ P = (S \ P ) ∪ P. Next we union the second

copies of the Kis to get S \ P = K1 ∪K2 ∪K3. We can then perform the “shifting from infinity”

trick to plug the holes in S \P to produce a second, complete copy of S. Hence, we have produced

two spheres from one!

Note. The above argument dealt with the two-dimensional surface of a sphere, and not with a

solid ball. This part can be easily revised by taking every point on the sphere and adding an open

line segment from that point to the center of the sphere. This can be done to each of the sets above

as well. The same construction as above can be used, with the center of the original sphere going

into one copy, and the center of the second taken care of by shifting from infinity.

Note. You probably noticed that the “cutting template” trick which was used to create a second

copy of the Kis, could be used over and over to ultimately produce as many copies of the sphere as

you want from the original one. Things, it turns out, are even a little stranger! There is another

version of the Banach-Tarski Paradox which states that for any two bounded three-dimensional

sets with nonempty interiors, one can be decomposed into a finite number of pieces and the pieces

rigidly rearranged (rotated or translated) to produce the other. This implies, among other offensive

things, that a sphere the size of a pea can be decomposed and rearranged to produce a sphere the

size of the Sun. That’s why the Banach-Tarski Paradox is sometimes called the “Pea and the Sun

Paradox.”

Note. How should we try to visualize this? What do the pieces look like? Several websites have

images in which the sphere is cut into small, solid pieces. We know the pieces must be rather

exotic, or else they would be measurable and the paradox would not appear (because of additivity).

I imagine something like this:
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You might think of the sets K1, K2, and K3 as being the yellow, green, and blue points, respectively.

We know that the sets are rather “mixed together,” maybe like the rationals and irrationals in R.

There are a few more points of different colors here, which we might think of as points in set P .

This image (from CMB Map Lab, from the webpage of Clem Pryke of the University of Minnesota

Department of Physics) is actually a map of the cosmic microwave background.

Note. The construction presented here is not the easiest in terms of numbers of pieces. In 1947,

R.M. Robinson (1911–1995) showed that the construction could be accomplished using only five

pieces (and could not be accomplished using fewer pieces). Two of the pieces form one new sphere

and the other three create a second sphere (“On the Decomposition of Spheres,” Fundamenta

Mathematicae, 34 (1947), 246–260).
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