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Chapter 14. Duality for

Normed Linear Spaces

Note. In Section 8.1, we defined a linear functional on a normed linear space,

a bounded linear functional, and the functional norm. In Proposition 8.1 (the

proof is Exercise 8.2) it is shown that the collection of bounded linear functionals

themselves form a normed linear space called the dual space of X , denoted X∗.

In Chapters 14 and 15 we consider the mapping from X × X∗ → R defined by

(x, ψ) 7→ ψ(x) to “uncover the analytic, geometric, and topological properties of

Banach spaces.” The “departure point for this exploration” is the Hahn-Banach

Theorem which is started and proved in Section 14.2 (Royden and Fitzpatrick, page

271).

Section 14.1. Linear Functionals, Bounded Linear

Functionals, and Weak Topologies

Note. In this section we consider the linear space of all real valued linear function-

als on linear space X (without requiring X to be named or the functionals to be

bounded), denoted X ]. We also consider a new topology on a normed linear space

called the weak topology (the old topology which was induced by the norm we now

may call the strong topology). For the deal X∗ of normed linear space X , the weak

topology is called the weak-∗ topology.
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Note. Recall that if Y and Z are subspaces of a linear space then Y + Z is also a

subspace of X (by Exercise 13.2) and that if Y ∩ Z = {0} then Y + Z is denoted

T ⊕ Z and is called the direct sum of Y and Z.

Definition. Let X be a linear space. The linear space of all linear real valued

functions on X (whether the functionals are bounded or not) is denoted X ] (read

“X sharp”).

Lemma 14.1.A. LetX be a linear space and ψ ∈ X ], ψ 6= 0, and x0 ∈ X for which

the direct sum X = (Ker(ψ))⊕ span{x0}, where Ker(ψ) = {x ∈ X | ψ(x) = 0}.

Note. If x0 ∈ X and for ψ ∈ X ] where ψ 6= 0 we have ψ(x0) = c, then for any x ∈

X with ψ(x) = c we have ψ(x−x0) = ψ(x)−ψ(x0) = c−c = 0. So x = (x−x0)+x0

and x ∈ Ker(ψ) + x0. Therefore ψ−1(c) = {x ∈ X | ψ(x) = c} = Ker(ψ) + x0. By

Lemma 14.1.A, if X is n-dimensional then Ker(ψ) is (n − 1)-dimensional and in

this case ψ−1(c) is the translate of the (n − 1)-dimensional subspace (where x0 is

the translation vector and Ker(ψ) is the subspace).

Definition. Let X be a linear space and let X0 be a linear subspace. If X0 has the

property that there is some x−0 ∈ X , x0 6= 0, for which X = X0 +span{x0}, then

X0 is a linear subspace of codimension 1 in X . A translate of a linear subspace of

codimension 1 is called a hyperplane.
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Proposition 14.1. A linear subspace X0 of a linear space X is of codimension 1

if and only if X0 = Ker(ψ) for some nonzero ψ ∈ X ].

Note. The following is an “extension theorem” in the same sense as is the “Tietze

Extension Theorem” from Section 12.1.

Proposition 14.2. Let Y be a linear subspace of a linear space X . Then each lin-

ear functional on Y is an extension to a linear functional on all of X . In particular,

for each nonzero x ∈ X there is a ψ ∈ X ] for which ψ(x) 6= 0.

Note. Since X∗ is the (normed) linear space of all bounded linear functionals on

X , then X∗ is a subset of X ], the linear space of all linear functionals on X . In

Exercise 14.3 it is shown that if X is a finite dimensional normed linear space that

every linear functional on X is continuous and hence (by Theorem 13.1) bounded.

So in a finite dimensional normed linear space, X∗ = X ]. In fact, this property can

be used to classify a normed linear space as finite or infinite dimensional (similar

to Riesz’s Theorem of Section 13.3 which classified these spaces by considering the

compactness of the closed unit ball), as we’ll see in Propostion 14.3.

Definition. Let X be a linear space. A set B ⊂ X is a Hamel basis if every vector

in X is expressible as a unique finite linear combination of vectors in B.
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Note. In Exercise 14.16 it is shown that every linear space has a Hamel basis using

Zorn’s Lemma. The fact that Zorn’s Lemma (which is equivalent to the Axiom of

Choice) is needed for this proof means that we have no idea what is in a Hamel

basis, just as in Section 2.6 when we “constructed” a nonmeasurable set P using the

Axiom of Choice, we had no idea what was in set P . This makes it impractical to

use a Hamel basis in any area of applied math. Though we do apply the existence

of a Hamel basis in the proof of the following.

Proposition 14.3. Let X be a normed linear space X is finite dimensional if and

only if X ] = X∗.

Note. The following relates elements of X ] to subsets of X ] in terms of linear

combinations and will be used when studying properties of weak topologies.

Proposition 14.4. Let X be a linear space, let ψ ∈ X ] and {ψi}ni=1
⊂ X ]. Then

ψ is a linear combination of {ψi}ni=1
if and only if ∩ni=1

Ker(ψi) ⊂ Ker(ψ).

Recall. In Section 11.4 we defined topology T1 on set X to be stronger than

topology T2 on set X (or T2 is weaker than T1) if T2 ⊂ T2. also, for X any set and a

collection of mappings F = {f : X → R}, the weakest topology forX that contains

the collection of sets {f−1(O) | f ∈ F ,O is open in R} is the weak topology for X

induced by F . By Proposition 11.13 the weak topology induced by F has the

fewest number of sets among the topologies on X for which each mapping of F is
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continuous. A base for the F -weak topology on X at x ∈ x is given by sets of the

form

Nε,f1,f2,...,fn
(x) = {x′ ∈ X | |fj(x

′) − f(x)| < ε for 1 ≤ k ≤ n}

where ε > 0 and {fk}
n
k=1

is a finite subcollection of F .

Note. A sequence {xn} ⊂ X converges to x ∈ X with respect to the F -weak

topology if an only if limn→∞ f(xn) = f(x) for all f ∈ F since each f is continuous

in the F -weak topology.

Definition. A function on X that is continuous with respect to the F -weak topol-

ogy is F-weakly continuous. A set open in the F -weak topology is F-weakly open.

We similarly have F-weakly closed sets and F-weakly compact sets.

Proposition 14.5. Let X be a linear space and W a subspace of X ]. Then a

linear functional ψ : X → R is E-weakly continuous if and only if it belongs to W .

Note. Any collection F of real valued functions on a set X determines the F -weak

topology on X . This yields a special topology on X when F = X∗ (the bounded

linear functionals on X).

Definition. Let X be a normed linear space. The weak topology induced on X

by the dual space X∗ is the weak topology on X .
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Note. By Theorem 13.1, a linear functional mapping X to R is bounded (i.e., in

X∗) if and only if it is continuous (that is, continuous with respect to the topology

on X which is induced by the norm on X ; R had the usual Euclidean topology given

by the absolute value metric). So the weak topology on X induced by the norm on

X (which we now call the strong topology). In Exercise 14.6 it is shown that the

strong and weak topologies on X coincide if and only if X is finite dimensional.

Note. A base for the weak topology on X at x ∈ X is given by sets of the form

Nε,ψ1,ψ2,...,ψn
(x) = {x′ ∈ X | |ψk(x

′) − ψk(x)| < ε for 1 ≤ k ≤ n}

where ε > 0 and {ψk}
n
k=1

is a finite subcollection of X∗.

Note. As opposed to the terminology “X∗-weakly continuous/convergent/open/

closed” we just say “weakly continuous/. . . .” Notice that a sequence {xn} in X

converges weakly to x ∈ X if and only if limn→∞ ψ(xn) = ψ(x) for all ψ ∈ X∗. For

weak convergence, we write {xn}⇀ x.

Definition. Let X be a normed linear space. For x ∈ X define functional J(x) :

X∗ → R by J(x)[ψ] = ψ(x) for all ψ ∈ X∗. This is the evaluation functional (at

x).

Lemma 14.1.B. The evaluation functional J(x) is linear and bounded. That is,

J(x) ∈ (X∗)∗.
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Note. We can consider J itself as a function of x ∈ X to J(x) ∈ (X∗)∗. So

J : X → (X∗)∗. Now J is linear since

J(α1x1+α2x2)[ψ] = ψ(α1x1+α2x2) = α1ψ(x1)+α2ψ(x2) = α1J(x1)[ψ]+α2J(x2)[ψ]

for all ψ ∈ X∗, so J(α1x2 +α2x2) = α1J(x0) +α2J(x2). Therefore J(X) is a linear

subspace of (X∗)∗ (by definition of “linear subspace”; J(X) is clearly closed under

linear combinations). Since J(X) is a collection of real valued functions on X∗,

then we can consider the “J(X)-weak topology” on X∗ induced by the set J(X).

Definition. Let X be a normed linear space. The weak topology on X∗ induced

by J(X) ⊂ (X∗)∗, where J(x) : X∗ → R defined as J(x)[ψ] = ψ(x) for all ψ ∈ X∗,

is the weak-∗ topology on X∗.

Note. A base for the weak-∗ topology on X∗ at ψ ∈ X∗ is given by sets of the

form

Nε,x1,x2,...,xn
(ψ){ψ′ ∈ X∗ | |ψ′(xk) − ψ(xk)| < ε for 1 ≤ k ≤ n}

where ε > 0 and {xk}
n
k=1

is a finite subset of X . We, similar to above, refer to

weak-∗ continuous.convergent.open/closed. Notice that a sequence {ψn} in X∗ is

weak-∗ convergent to ψ ∈ X∗ if and only if limn→∞ ψ(xn) = ψ(x) for all x ∈ X .

Note. For normed linear space X , we have the following relationships on the

topologies on X∗:

weak-∗ topology on X∗ ⊂ weak topology on X∗ ⊂ strong topology on X∗.
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Definition. Let X be a normed linear space. The linear operator J : X → (X∗)∗,

defined by J(x)[ψ] = ψ(x) for all x ∈ X and ψ ∈ X∗, is the natural embedding of

X into (X∗)∗. The space X is reflexive provided J(X) = (X∗)∗. We denote (X∗)∗

as X∗∗ and call it the bidual of X (or the double dual).

Note. We now classify reflexive spaces in terms of their topologies.

Proposition 14.6. A normed linear space X is reflexive if and only if the weak

and weak-∗ topologies are the same.

Note. The term “embedding” implies a one to one mapping, but we have not

shown that J : X → X∗∗ is one to one. We have not even established that there

are nonzero bounded linear functionals on a general normed linear space (that is,

we do not know that |X∗| > 1). In the next section, we prove the Hahn-Banach

Theorem which will allow us to prove the existence of bounded linear functionals

from a subspace (Theorem 14.7). We will also show that J : X → X∗∗ is an

isometry (in Corollary 14.9) and so is one to one.
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