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Chapter 17. General Measure Spaces:

Their Properties and Construction

Note. In Chapter 2, we defined Lebesgue measure on the σ-algebra M, and used

open sets (open intervals, specifically) in the definition. In this chapter, we give an

abstract definition of a measure on a σ-algebra of some point set. The technique is

analogous to the definition of a topology—the sets which are open are, by definition,

the sets in the topology. Hence, the sets which are measurable are, by definition,

the sets in the σ-algebra. We will still, however, have some analogies with outer

measure and the Carathéodory splitting condition.

Section 17.1. Measures and Measurable Sets

Note. In this section, we define a measure space and show parallels between this

new setting and the results of Chapter 2.

Definition. A measurable space is an ordered pair (X,M) consisting of a set X

and a σ-algebra M of subsets of X . Set E ⊂ X is measurable if E ∈ M. A

measure µ on a measurable space (X,M) is an extended real-valued nonnegative

set function µ : M → [0,∞] for which µ(∅) = 0 and which is countably additive in

the sense that for any countable disjoint collection {Ek}
∞
k=1

of measurable sets,

µ

(

∞
⋃

·
k=1

Ek

)

=

∞
∑

k=1

µ(Ek).

A measure space (X,M, µ) is a measurable space (X,M) together with a measure

µ on M.
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Note. We denote the power set of X , motivated by properties of cardinal numbers,

as P(X) = 2X .

Example. For any set X , we can take M = 2X and define η on M as η(A) = |A|

for finite set A and η(B) = ∞ for infinite set B. Then (X,M, η) is a measure

space. η is called the counting measure on X .

Example. For X uncountable and C the collection of subsets of X that are either

countable or the complement of a countable set. We claim that C is a σ-algebra

and define µ as µ(A) = 0 for A countable and µ(B) = 1 for B where X \ B is

countable. (Notice that there are not two disjoint sets of measure 1, so countable

additivity is not an issue.) Then (X, C, µ) is a measure space.

Proposition 17.1. Let (X,M, µ) be a measure space.

(i) For any finite disjoint collection {Ek}
n

k=1
of measurable sets,

µ

(

n
⋃

·
k=1

Ek

)

=

n
∑

k=1

µ(Ek).

That is, µ is finite additive.

(ii) If A and B are measurable sets and A ⊆ B, then µ(A) ≤ µ(B). That is, µ is

monotone.

(iii) If A and B are measurable sets, A ⊆ B, and µ(A) < ∞, then µ(B \ A) =

µ(B) − µ(A). This is the excision principle.



17.1. Measures and Measurable Sets 3

(iv) For any countable collection {Ek}
∞
k=1

of measurable sets that covers a mea-

surable set E,

µ(E) ≤

∞
∑

k=1

µ(Ek).

This is called countable monotonicity.

Note. The following is analogous to Theorem 2.15. In fact, the proof of this new

result is identical to the proof of Theorem 2.15.

Proposition 17.2. Continuity of Measure.

Let (X,M, µ) be a measure space.

(i) If {Ak}
∞
k=1

is an ascending sequence of measurable sets (i.e., Ak ⊆ Ak+1), then

µ

(

∞
⋃

k=1

Ak

)

= µ
(

lim
k→∞

Ak

)

= lim
k→∞

µ(Ak).

(ii) If {Bk}
∞
k=1

is a descending sequence of measurable sets (i.e., Bk ⊇ Bk+1) for

which µ(B1) < ∞, then

µ

(

∞
⋂

k=1

Bk

)

= µ
(

lim
k→∞

Bk

)

= lim
k→∞

µ(Bk).

Definition. For a measure space (X,M, µ) and measurable E ⊆ X , a property

holds almost everywhere on E (denoted “a.e. on E”) if the property holds on E \E0

where E0 is measurable, E0 ⊆ E, and µ(E0) = 0.
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Note. The Borel-Cantelli Lemma from Section 2.5 also holds in measure spaces.

The Borel-Cantelli Lemma. Let (X,M, µ) be a measure space and {Ek}
∞
k=1

be

a countable collection of measurable sets for which

∞
∑

k=1

µ(Ek) < ∞. Then almost

all x ∈ X belong to at most a finite number of the Ek’s.

Definition. Let (X,M, µ) be a measure space. The measure µ is finite provided

µ(X) < ∞. The measure is σ-finite if X is the union of a countable collection

of measurable sets, each of which has finite measure. E ∈ M is of finite measure

if µ(E) < ∞. E ∈ M is σ-finite if E is the union of a countable collection of

measurable sets, each of which has finite measure.

Example. Lebesgue measure on [0, 1] is a finite measure. Lebesgue measure on R

is a σ-finite measure. The counting measure on an uncountable set is not σ-finite.

Note. Many of the properties of Lebesgue measure and Lebesgue integration hold

for arbitrary measures which are σ-finite, and the property of σ-finite is often

necessary for the properties to hold.

Note. By Proposition 2.4, any subset of R of outer measure zero is measurable. In

particular, any subset of a set of real numbers of outer measure zero is measurable.

However, this is not necessarily a property of a measure space. Yet we still desire

this property.
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Definition. A measure space (X,M, µ) is complete if M contains all subsets of

sets of measure zero.

Example. Lebesgue measure on the σ-algebra of Lebesgue measurable sets is a

complete measure by Proposition 2.4. Lebesgue measure on the Borel sets is not

a complete measure space since there are subsets of the Cantor set (which is of

measure zero) which are not Borel. This is argued on page 52, but can also be

shown by a cardinality argument: |B| = ℵ1 and |P(C)| = ℵ2.

Proposition 17.3. Let (X,M, µ) be a measure space. Define

M0 = {E ⊆ X | E = A ∪ B,B ∈ M, A ⊆ C for some C ∈ M with µ(C) = 0}.

Define µ0(E) = µ(B) for all E ∈ M0. Then M0 is a σ-algebra that contains M, µ0

is a measure that extends µ to M0, and (X,M0, µ0) is a complete measure space,

called the completion of (X,M, µ).

Proof. Problem 17.9.

Problem 17.5. Let (X,M, µ) be a measure space. The symmetric difference,

E14E2, of two subsets E1 and E2 of X is defined as E14E2 = (E1 \E2)∪· (E2 \E1).

(i) Show that if E1, E2 ∈ M and µ(E14E2) = 0, then µ(E1) = µ(E2).

(ii) Show that if µ is complete, E1 ∈ M and E2 \ E1 ∈ M, then E2 ∈ M if

µ(E14E2) = 0.
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