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Section 17.3. The Carathéodory Measure Induced

by an Outer Measure

Note. In this section, we consider set functions µ∗ defined on P(X) = 2X (a new

notation for the power set) which satisfies certain properties and take on values

in [0,∞] (so we are leaving signed measure behind). If µ∗ satisfies these certain

properties, it is called an outer measure. We again consider the Carathéodory

splitting condition and define a measure µ based on µ∗. Therefore, we are totally

mimicking the development of Lebesgue measure in this abstract setting. What

makes this setting “abstract” is that we don’t have a very hands-on feel for µ or

µ∗ (unlike in the development of Lebesgue measure, which was all ultimately based

on open intervals).

Definition. A set function µ : S → [0,∞] defined on a collection S of subsets of

a set X is countably monotone provided that whenever E ⊂ ∪∞
k=1

Ek where E and

each Ek are in S, then µ(E) ≤
∞∑

k=1

µ(Ek).

Note. If ∅ ∈ S and µ(∅) = 0, then µ is finitely monotone: µ(E) ≤

n∑

k=1

µ(Ek),

since we simply take Ek = ∅ for k > n and use countable monotonicity.

Definition. A set function is monotone on S if for each A,B ∈ S with A ⊂ B, we

have µ(A) ≤ µ(B).
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Definition. A set function µ∗ : 2X → [0,∞] is an outer measure if µ∗(∅) = 0 and

µ∗ is countably monotone.

Note. As with Lebesgue measure, we use the Carathéodory splitting condition to

define “measurable.” Also like Lebesgue measure, this will give us the equipment

to prove the usual properties of a measure.

Definition. For an outer measure µ∗ : 2X → [0,∞], we call a subset E of X

measurable (with respect to µ∗) if for every subset A of X we have

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

Note. Again, this is an “abstract setting” since we still have not actually defined

any outer measure, but have merely imposed an outer measure on 2X . We define

outer measure on page 350, though even then it is in terms of a set function which

is not specifically defined.

Note. Trivially, if E is measurable then Ec = X \ E is measurable. Since µ∗ is

finitely monotone, to show E ⊂ X is measurable we need only show

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ Ec) for all A ⊂ X,µ∗(A) < ∞.

Proposition 17.5. The union of a finite collection of measurable sets is measur-

able.
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Note. At this stage, we know that the measurable sets form an algebra of sets.

Proposition 17.6. Let A ⊂ X and {Ek}
n

k=1
be a finite disjoint collection of

measurable sets. Then

µ∗ (A ∩ [∪n

k=1
Ek]) =

n∑

k=1

µ∗(A ∩ Ek).

That is, µ∗ is finite additive on the measurable sets (which follows with A = X).

Proposition 17.7. The union of a countable collection of measurable sets is

measurable.

Note. We now have that the measurable sets (with respect to µ∗) form a σ-algebra.

However, we have not yet shown that we have a measure since we have not shown

countable additivity (see the definition on page 338). We do so in a restricted sense

in the following.

Theorem 17.8. Let µ∗ be an outer measure on 2X . Then the collection M of sets

that are measurable with respect to µ∗ is a σ-algebra. If µ is the restriction of µ∗

to M, then (X,M, µ) is a complete measure space.
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