
17.5. The Carathéodory-Hahn Theorem 1

Section 17.5. The Carathéodry-Hahn Theorem:

The Extension of a Premeasure to a Measure

Note. We have µ defined on S and use µ to define µ∗ on X . We then restrict

µ∗ to a subset of X on which µ∗ is a measure (denoted µ). Unlike with Lebesgue

measure where the elements of S are measurable sets themselves (and S is the set

of open intervals), we may not have µ defined on S. In this section, we look for

conditions on µ : S → [0,∞] which imply the measurability of the elements of S.

Under these conditions, µ is then an extension of µ from S to M (the σ-algebra of

measurable sets).

Definition. A set function µ : S → [0,∞] is finitely additive if whenever {Ek}
∞
k=1

is a finite disjoint collection of sets in S and ∪∞
k=1

Ek ∈ S, we have

µ

(

n
⋃

·
k=1

Ek

)

=
n
∑

k=1

µ(Ek).

Note. We have previously defined finitely monotone for set functions and Propo-

sition 17.6 gives finite additivity for an outer measure on M, but this is the first

time we have discussed a finitely additive set function.

Proposition 17.11. Let S be a collection of subsets of X and µ : S → [0,∞]

a set function. In order that the Carathéodory measure µ induced by µ be an

extension of µ (that is, µ = µ on S) it is necessary that µ be both finitely additive

and countably monotone and, if ∅ ∈ S, then µ(∅) = 0.
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Note. We want to create measures using set functions, outer measure, and the

Carathéodory condition. We want, as with Lebesgue measure, the Carathéodory

measure to extend the set function, so we want the conditions of Proposition 17.11

to be satisfied. So, in light of Proposition 17.11, we have the following definitions.

Definition. Let S be a collection of subsets of X and µ : S → [0,∞] a set function.

Then µ is a premeasure if µ is both finitely additive and countably monotone and,

if ∅ ∈ S, then µ(∅) = 0.

Note. The condition of a set function being a premeasure is necessary (by Propo-

sition 17.11) but not sufficient to guarantee that µ is an extension of µ, as shown

in Problems 17.25 and 17.26. It turns out that we need more “algebraic” structure

on the sets in S.

Definition. A collection S of subsets of X is said to be closed with respect to

the formation of relative complements provided that for any A,B ∈ S, the relative

complement A \ B ∈ S. The collection S is said to be closed with respect to

the formation of finite intersections provided for any A,B ∈ S, the intersection

A ∩ B ∈ S.

Note. Closure with respect to relative complements implies closure with respect

to finite intersections since A ∩ B = A \ (A \ B). Closure with respect to relative

complements also implies ∅ ∈ S since ∅ = A \ A.
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Theorem 17.12. Let µ : S → [0,∞] be a premeasure on a nonempty collection S

of subsets of X that is closed with respect to the formation of relative complements.

Then the Carathéodory measure µ : M → [0,∞] induced by µ is an extension of

µ called the Carathéodory extension of µ.

Note. As observed above, we need a certain amount of algebraic structure on S

(in terms of relative complements and so forth) before we can conclude that µ is

an extension of µ. This is the motivation for the following definition.

Definition. A nonempty collection S of subsets of X is a semiring if for all

A,B ∈ S, we have A ∩ B ∈ S and there is a finite disjoint collection {Ck}
n

k=1
of

sets in S for which A \ B = ∪· n

k=1
Ck.

Note. The following result concerning semiring S is a preamble to our main result

for this section (and requires a fairly lengthy proof).

Proposition 17.13. Let S be a semiring of subsets of a set X . Define S ′ to be the

collection of unions of finite disjoint collections of sets in S. Then S ′ is closed with

respect to the formation of relative complements. Furthermore, any premeasure on

S has a unique extension to a premeasure on S ′.
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Definition. Let S be a collection of subsets of X . A set function µ : S → [0,∞]

is σ-finite if X = ∪∞
k=1

Sk where Sk ∈ S and µ(Sk) < ∞ for each k ∈ N.

The Carathéodory-Hahn Theorem.

Let µ : S → [0,∞] be a premeasure on a semiring S of subsets of X . Then the

Carathéodory measure µ induced by µ is an extension of µ. Furthermore, if µ is

σ-finite, then so is µ and µ is the unique measure on the σ-algebra of µ∗-measurable

sets that extends µ.

Corollary 17.14. Let S be a semiring of subsets of a set X and B the smallest

σ-algebra of subsets of X that contain S. Then two σ-finite measures on B are

equal if and only if they agree on sets in S.

Note. The assumption of σ-finite in the Carathéodory-Hahn Theorem is necessary

for the uniqueness claim, as shown by example in Problem 17.32.

Note. The application of the Carathéodory-Hahn Theorem of most importance is

the introduction of product measures (in Sections 20.1 and 20.2). As a first exam-

ple, the bounded intervals of real numbers form a semiring (see Problem 17.33i)

and the set function which associated the length of an interval with the interval is

a premeasure. So by the Carathéodory-Hahn Theorem, Lebesgue measure (which

is the Carathéodory measure induced by interval length) is the unique σ-finite

extension of length on the σ-algebra of Lebesgue measurable sets.
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Note. We conclude this chapter with a few set-theoretic definitions.

Definition. Let S be a collection of subsets of X . Then S is a ring of sets if it

is closed with respect to finite unions and the formation of relative complements

(and therefore by DeMorgan, closed with respect to finite intersections). A ring

that contains X is an algebra (again). A semiring that contains X is a semialgebra.
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