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Chapter 18. Integration Over General

Measure Spaces

Note. We now define integrals of extended real-valued functions over measure

spaces much in the same way we did for Lebesgue integrals. Some of the details are

different—for example we prove Fatou’s Lemma early on and other results, such as

the Monotone Convergence Theorem follow later.

Section 18.1. Measurable Functions

Note. In this section, we define and prove some of the familiar properties of

measurable functions (such as the Simple Approximation Theorem) in the setting

of extended real-valued functions defined on measure spaces.

Proposition 18.1. Let (X,M) be a measure space and f an extended real-valued

function defined on X . The following are equivalent:

(i) For each c ∈ R, the set {x ∈ X | f(x) < c} is measurable (i.e., in M).

(ii) For each c ∈ R, the set {x ∈ X | f(x) ≤ c} is measurable.

(iii) For each c ∈ R, the set {x ∈ X | f(x) > c} is measurable.

(i) For each c ∈ R, the set {x ∈ X | f(x) ≥ c} is measurable.

Each of these properties implies that for each extended real number c, the set

{x ∈ X | f(x) = c} is measurable.
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Note. Since M is a σ-algebra, the proof of Proposition 18.1 is identical to the

proof of Proposition 3.1.

Definition. Let (X,M) be a measure space. An extended real-valued function f

on X is said to be measurable (or measurable with respect to M) provided one (and

hence all) of the four statements of Proposition 18.1 holds.

Proposition 18.2. Let (X,M) be a measure space and f a real-valued function on

X . Then f is measurable if and only if for each open O ⊂ R, f−1(O) is measurable.

Idea of Proof. Every open set of real numbers is a countable disjoint union of

open intervals. Any open interval (a, b) ⊂ R satisfies

f−1((a, b)) = {x ∈ X | f(x) < b} ∩ {x ∈ X | f(x) > a}.

Since M is a σ-algebra, the result follows. �

Definition. For measure space (X,M) and measurable subset E ⊂ X , extended

real-valued function f defined on E is measurable if f is measurable on (E,ME)

where ME is the collection of sets in M that are subsets of E.

Note. It easily follows that the restriction of measurable extended real-valued f

on X to a measurable set E ⊂ X is measurable on E and measurable on X \ E,

and conversely.
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Proposition 18.3. Let (X,M, µ) be a complete measure space and X0 a measur-

able subset of X for which µ(X \X0) = 0. Then an extended real-valued function f

on X is measurable if and only if its restriction to X0 is measurable. In particular,

if g and h are extended real-valued functions on X for which g = h a.e. on X , then

g is measurable if and only if h is measurable.

Note. The completeness of (X,M, µ) is explicit in the proof of Proposition 18.3.

In fact, Proposition 18.3 does not hold if the measure space is not complete (see

Problem 18.2).

Theorem 18.4. Let (X,M) be a measurable space and f and g measurable

real-valued functions on X .

• Linearity: For any α, β ∈ R, αf + βg is measurable.

• Products: f · g is measurable.

• Maximum and Minimum: max{f, g} and min{f, g} are measurable.

Proof. The proof is the same as the result for Lebesgue measurable functions

(Theorem 3.6).

Note. Notice that Theorem 18.4 applies only to real-valued functions. In taking

a linear combination αf + βg, there is the concern of ∞−∞ if we allow extended

real-valued functions. Notice the blanket statement on page 361 that we bury the

extended real values on sets of measure 0.
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Proposition 18.5. Let (X,M) be a measurable space, f a measurable real-valued

function on X , and ϕ : R → R continuous. Then the composition ϕ ◦ f : X → R

also is measurable.

Note. We will use Proposition 18.5 in Chapter 19 when we consider Lp spaces and

use ϕ(t) = |t|p, so that ϕ ◦ f = |f |p.

Theorem 18.6. Let (X,M, µ) be a measure space and {fn} a sequence of measur-

able functions on X for which {fn} → f pointwise a.e. on X . If either the measure

space (X,M, µ) is complete or the convergence is pointwise on all of X , then f is

measurable.

Note. Theorem 18.6 does not hold if the measure space is not complete (see

Problem 18.3).

Corollary 18.7. Let (X,M, µ) be a measure space and {fn} be a sequence of

measurable functions on X . Then the following functions are measurable:

sup{fn}, inf{fn}, lim sup{fn}, lim inf{fn}.

Note. The following two results are the parallels to results of the same name from

Section 3.2.
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The Simple Approximation Lemma.

Let (X,M) be a measurable space and f a measurable function on X that is

bounded on X . Then for each ε > 0, there are simple functions ϕε and ψε on X

such that

ϕε ≤ f ≤ ψε and 0 ≤ ψε − ϕε < ε on X.

The Simple Approximation Theorem.

Let (X,M, µ) be a measure space and f a measurable function on X . Then there

is a sequence {ψn} of simple functions on X that converges pointwise on X to f

and |ψn| ≤ |f | on X for all n ∈ N.

(i) If X is σ-finite, then we may choose the sequence {ψn} so that each ψε vanishes

outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {ψn} to be increasing and

each ψn ≥ 0 on X .

Note. The proof of Egoroff’s Theorem in the measure space setting is proven

similarly to the proof in the Lebesgue measure setting—namely, using continuity

and countable additivity of measure. Recall that it says that, on sets of finite

measure, pointwise convergence is “nearly” uniform convergence.
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Egoroff’s Theorem.

Let (X,M, µ) be a finite measure space and {fn} a sequence of measurable func-

tions on X that converges pointwise a.e. on X to function f which is finite a.e. on

X . Then for each ε > 0, there is a measurable subset Xε of X for which {fn} → f

uniformly on Xε and µ(X \Xε) < ε.
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