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Section 18.3. Integration of General

Measurable Functions

Note. We now extend the results for nonnegative measurable functions to general

measurable functions, as we did for Lebesgue integration in Section 4.4. As always,

things will go as expected as long as we avoid “∞−∞.”

Definition. Let (X,M) be a measurable space and f a measurable function on

X . The positive part, f+, and negative part, f−, of f are

f+(x) = max{f(x), 0} for x ∈ X,

f−(x) = max{−f(x), 0} for x ∈ X.

Note. Both f+ and f− are nonnegative measurable functions (and so can be

dealt with using the techniques of the previous section). Also, f = f+ − f− and

|f | = f+ + f−. Since 0 ≤ f+ ≤ |f | and 0 ≤ f− ≤ |f |, by (8) of “Lemma” we

see that if |f | is integrable then so are f+ and f−. Conversely, if f+ and f− are

integrable then so is |f | by Linearity of Integration of Nonnegative Measurable

Functions (Proposition 18.11).
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Definition. Let (X,M, µ) be a measure space. A measurable function f on X is

integrable over X with respect to µ if |f | is integrable over X . For such a function

we define the integral of f over X with respect to µ as

∫

X

f dµ =

∫

X

f+ dµ −

∫

X

f− dµ.

For a measurable subset E of X , f is integrable over E if fχE is integrable over X

and we define the integral over E of f as

∫

E

f dµ =

∫

X

fχE dµ.

The Integral Comparison Test.

Let (X,M, µ) be a measure space and f a measurable function on X . If g is

integrable over X and dominates f on X in the sense that |f | ≤ g a.e. on X , then

f is integrable over X and

∣

∣

∣

∣

∫

X

f dµ

∣

∣

∣

∣

≤

∫

X

|f | dµ ≤

∫

X

g dµ.

Note. If we wish to add measurable h and g on X (or take a linear combination

of h and g), then we become concerned with “∞ −∞.” However, if h and g are

integrable, then by Proposition 18.9, h and g are finite a.e. on X . Let X0 ⊂ X be

the set on which both h and g are finite. Then µ(X \ X0) = 0. So by (9) from

“Lemma” of the previous section,

∫

X

(g + h) dµ =

∫

X0

(g + h) dµ.
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So, we can continue on our way with the study of integrable functions. Basically,

as with Lebesgue integration and integrability, we have swept the nasty infinities

under the measure zero X \ X0 rug!

Theorem 18.12. Let (X,M, µ) be a measure space and let f and g be integrable

over X .

(Linearity) For α, β ∈ R, αf + βg is integrable over X and

∫

X

(αf + βg) dµ = α

∫

X

f dµ + β

∫

X

g dµ.

(Monotonicity) If f ≤ g a.e. on X , then

∫

X

f dµ ≤

∫

X

g dµ.

(Additivity Over Domains) If A and B are disjoint measurable sets, then

∫

A∪·B

f dµ =

∫

A

f dµ +

∫

B

f dµ.

Note. It is easy to extend additivity using the Monotone Convergence Theorem.

Theorem 18.13. Countable Additivity over Domains of Integration.

Let (X,M, µ) be a measure space, let function f be integrable over X , and let

{Xn}
∞
n=1 be a disjoint countable collection of measurable sets whose union is X .

Then
∫

X

f dµ =

∫

∪·Xk

f dµ =

∞
∑

n=1

(
∫

Xk

f dµ

)

.
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Theorem 18.14. Continuity of Integration.

Let (X,M) be a measure space and let the function f be integrable over X .

(i) If {Xn}
∞
n=1 is an ascending countable collection of measurable subsets of X

whose union is X , then

∫

X

f dµ = lim
n→∞

(
∫

Xn

f dµ

)

.

(ii) If {Xn}
∞
n=1 is a descending countable collection of measurable subsets of X ,

then
∫

∩Xn

f dµ = lim
n→∞

(∫

Xn

f dµ

)

.

Note. The only “concrete” examples of integrable functions we currently have are

simple functions that vanish outside a set of finite measure. The following result

gives a class of integrable functions similar to the class addressed in Section 4.2.

Theorem 18.15. Let (X,M, µ) be a measure space and f a measurable function

on X . If f is bounded on X and vanishes outside a set of finite measure, then f is

integrable over X .

Note. We complete our study of integration of general measurable functions in the

abstract setting with two convergence theorems (Lebesgue Dominated and Vitali).
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The Lebesgue Dominated Convergence Theorem.

Let (X,M, µ) be a measure space and let {fn} be a sequence of measurable func-

tions on X for which {fn} → f pointwise a.e. on X and suppose f is measurable.

Assume there is a nonnegative function g that is integrable over X and dominates

the sequence {fn} on X in the sense that |fn| ≤ g a.e. on X for all n ∈ N. Then f

is integrable over X and

lim
n→∞

(
∫

X

fn dµ

)

=

∫

X

(

lim
n→∞

fn

)

dµ =

∫

X

f dµ.

Note. We now turn our attention to the Vitali Convergence Theorem. Recall that,

in Sections 4.6 and 5.1, we had two versions of the Vitali Convergence Theorem.

The first dealt with “uniform integrability” on a set of finite measure and the second

dealt with uniform integrability and “tightness.” We need new definitions and a

preliminary result.

Definition. Let (X,M, µ) be a measure space and {fn} a sequence of functions on

X , each of which is integrable over X . The sequence {fn} is uniformly integrable

over X if for each ε > 0 there is a δ > 0 such that for any n ∈ N and for any

measurable subset E of X :

if µ(E) < δ then

∫

X

|fn| dµ < ε.

The sequence {fn} is tight over X if for each ε > 0, there is a subset X0 of X that

has finite measure and for which
∫

X\X0

|fn| dµ < ε for all n ∈ N.
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Proposition 18.17. Let (X,M, µ) be a measure space and let the function f

be integrable over X . Then for each ε > 0, there is a δ > 0 such that for any

measurable subset E of X ,

if µ(E) < δ then

∫

E

|f | dµ < ε. (21)

Furthermore, for each ε > 0, there is a subset X0 of X that has finite measure and

∫

X\X0

|f | dµ < ε.

The Vitali Convergence Theorem.

Let (X,M, µ) be a measure space and let {fn} be a sequence of functions on X

that is both uniformly integrable and tight over X . Suppose {fn} → f pointwise

a.e. on X and that f is integrable on X . Then

lim
n→∞

(
∫

X

fn dµ

)

=

∫

X

(

lim
n→∞

fn

)

dµ =

∫

X

f dµ.

Note. Here, the Vitali Convergence Theorem has a hypothesis that “f is inte-

grable over X [and hence is measurable].” In the case of Lebesgue integration, the

integrability of f followed from the a.e. pointwise convergence, uniform integrabil-

ity, and tightness of {fn} (see page 98). Here is an example showing that this is

not the case in general measure spaces.
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Example. Let X be a set and E a proper nonempty subset of X . Define M =

{∅, E,X \ E,X}. Then M is a σ-algebra. Define µ(∅) = 0, µ(E) = µ(X \ E) =

1/2, and µ(X) = 1. Then µ is a measure. Define fn = n ·χE −n ·χX\E. Then {fn}

is uniformly integrable and tight and converges pointwise to f where

f(x) =







∞ if x ∈ E

−∞ if x ∈ X \ E.

But then f is not integrable over E.

Note. There are added conditions in the measure space setting for which the

integrability of f will follow. For example, consider:

Exercise 36. Let {fn} be a sequence of integrable functions on X that is uniformly

integrable and tight. Suppose that {fn} → f pointwise a.e. on X . Suppose also

that f is measurable and finite a.e. on X . Then f is integrable over X .

Exercise 37. Let {fn} be a sequence of integrable functions on X that is uniformly

integrable. Suppose that {fn} → f pointwise a.e. on X . Suppose also that f is

measurable. Assume the measure space has the property that for each ε > 0, X is

the union of a finite collection of measurable sets, each of measure at most ε. Then

f is integrable over X .
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Corollary 18.18. Let (X,M, µ) be a measure space and {hn} a sequence of

nonnegative integrable functions on X . Suppose that {hn(x)} → 0 for almost all

x ∈ X . Then lim
n→∞

(
∫

X

hn dµ

)

= 0 if and only if {hn} is uniformly integrable and

tight.

Note. The above result is the analogous to Corollary 5.2 from the Lebesgue

integration setting.
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