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Section 18.4. The Radon-Nikodym Theorem

Note. For (X,M, µ) a measure space and f a nonnegative function on X that is

measurable with respect to M, the set function ν on M defined as ν(E) =

∫
E

f dµ

is a measure on (X,M). This follows from the fact that ν(∅) =
∫

∅
f dµ = 0 and ν

is countably additive by the linearity and the Monotone Convergence Theorem (see

Exercise 18.45). The Radon-Nikodym Theorem says that, in a sense, any measure

on (X,M) results from the integration of a nonnegative function.

Definition. A measure ν on (X,M) is absolutely continuous with respect to

measure µ if for all E ∈ M with µ(E) = 0, we have ν(E) = 0. This is denoted

ν � µ.

Proposition 18.19. Let (X,M, µ) be a measure space and ν a finite measure on

the measurable space (X,M). Then ν is absolutely continuous with respect to µ if

and only if for each ε > 0 there is a δ > 0 such that for any set E ∈ M, if µ(E) < δ

then ν(E) < ε.
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The Radon-Nikodym Theorem. Let (X,M, µ) be a σ-finite measure space

and ν a σ-finite measure defined on the measurable space (X,M) that is absolutely

continuous with respect to µ. Then there is a nonnegative f on X that is measurable

with respect to M for which

ν(E) =

∫
E

f dµ for all E ∈ M.

The function f is unique in the sense that if g is any nonnegative measurable

function on X for which ν(E) =
∫

E
g dµ for all E ∈ M, then g = f µ-a.e.

Definition. The function f of the Radon-Nikodym Theorem is the Radon-Nikodym

derivative of ν with respect to µ, denoted
dν

dµ
.

Note. The benefit of the Radon-Nikodym Theorem is that it allows us to ex-

press a measure in terms of an integral and we have an extensive theory of in-

tegrals. So we can use the properties of integrals to establish properties of the

measure. As an application, we can use the Radon-Nikodym Theorem to introduce

complex valued measures (see Exercise 18.4.B) and to address a conditional prob-

ability measure (even when conditioning on a probability 0 event; see my online

notes on “The General Concept of Conditional Probability and Expectation” at:

http://faculty.etsu.edu/gardnerr/Probability/notes/Prob-5-3.pdf).

Note. The assumption of σ-finiteness of µ and ν in the Radon-Nikodym Theorem

is necessary, as the following example shows.
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Example. Consider the measurable space (X,M) where X = [0, 1] and M is the

collection of Lebesgue measurable subsets of [0, 1]. Define µ to be the counting

measure on M (so for finite sets the measure is the cardinality and for infinite sets

the measure is ∞). Then the only set of µ-measure 0 is ∅, and so every measure

on M is absolutely continuous with respect to µ. Let m be Lebesgue measure on

M. Then by Exercise 18.60, there is no nonnegative Lebesgue measurable function

f on X for which

m(E) =

∫
E

f dµ for all E ∈ M.

Definition. Let ν be a signed measure on (X,M) and let ν = ν1−ν2 be the Jordan

decomposition of ν. Define the absolute value of signed measure ν as |ν| = ν1 + ν2.

If µ is a measure on M, the signed measure ν is absolutely continuous with respect

to µ if |ν| is absolutely continuous with respect to µ (or equivalently if both ν1 and

ν2 are absolutely continuous with respect to µ).

Corollary 18.20. The Radon-Nikodym Theorem for Signed Measures.

Let (X,M, µ) be a σ-finite measure space and ν a finite signed measure on mea-

surable space (X,M) that is absolutely continuous with respect to µ. Then there

is a function f that is integrable over X with respect to µ and

ν(E) =

∫
E

f dµ for all E ∈ M.

Function f is unique up to a set of µ-measure zero.

Note. Recall from Section 17.2, that two measures µ and ν on measurable space

(X,M) are mutually singular (denoted µ ⊥ ν) if there are disjoint A and B in M

for which X = A ∪· B and ν(A) = µ(B) = 0.
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The Lebesgue Decomposition Theorem.

Let (X,M, µ) be a σ-finite measure space and ν a σ-finite measure on the mea-

surable space (X,M). Then there is a measure ν0 on M which is singular with

respect to µ, and a measure ν1 on M which is absolutely continuous with respect

to µ, for which ν = ν0 + ν1. The measures ν0 and ν1 are unique.

Note. The Radon-Nikodym Theorem is named for Johann Radon(December 16,

1887 to May 25, 1956) and Otto Nikodym (August 3, 1887 to May 4, 1974).

Johann Radon Otto Nikodym

Radon first proved the result for the measure space (Rn,M, µn) in 1913 in his dis-

sertation at the University of Vienna. He worked at the University of Hamburg, Er-

langed, the University of Breslau. (See http://www-groups.dcs.st-and.ac.uk/

history/Biographies/Radon.html.)

Nikodym proved the general case for a measure space in 1930 in“Sur une général-

isation des intégrales de M. J. Rado” in Fundamenta Mathematicae, 15, 131-179.

Nikodym did his doctoral work at Warsaw University (Poland) and worked at the

university of Kraków, Warsaw University, and at the private Kenyon College in
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Ohio from 1948 to 1965. (See http://www-groups.dcs.st-and.ac.uk/history/

Biographies/Nikodym.html.)

According to Wikipedia “The theorem is very important in extending the ideas

of probability theory from probability masses and probability densities defined over

real numbers to probability measures defined over arbitrary sets. It tells if and how

it is possible to change from one probability measure to another. Specifically, the

probability density function of a random variable is the RadonNikodym derivative

of the induced measure with respect to some base measure (usually the Lebesgue

measure for continuous random variables).” (https://en.wikipedia.org/wiki/

Radon-Nikodym theorem).
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