Section 18.5. The Nikodym Metric Space: The Vitali-Hahn-Saks Theorem

Note. We construct a complete metric space from a finite measure space (X, \mathcal{M}, μ) . We then use the metric to explore sequences of finite measures on \mathcal{M} . In spite of the similarity of the title of this section and the previous one, there is limited connection of the results of this section and the Radon-Nikodym Theorem.

Note. Recall the symmetric difference of sets A and B is $A \triangle B = (A \setminus B) \cup (B \setminus A)$ (see Section 2.4). We can easily show that $(A \triangle B) \triangle (B \triangle C) = A \triangle C$. So we can define a relation \simeq on measure space (X, \mathcal{M}, μ) as $A \simeq B$ if $\mu(A \triangle B) \simeq 0$. This is clearly reflexive and symmetric and the above observation shows that it is transitive: $A \simeq B$ and $B \simeq C$ implies $A \simeq C$. So the relation is an equivalence relation on \mathcal{M} . Recall that an equivalence relation on a set partitions the set into equivalence classes. We (temporarily) denote the set of equivalence classes as $\mathcal{M}/_{\simeq}$ and denote the equivalence class containing A as [A].

Note. Define the mapping $\rho_{\mu} : \mathcal{M}/_{\simeq} \times \mathcal{M}/_{\simeq} \to \mathbb{R}$ as $\rho_{\mu}([A], [B]) = \mu(A \triangle B)$.

Lemma 18.5.A. The map $\rho_{\mu} : \mathcal{M}/_{\simeq} \times \mathcal{M}/_{\simeq} \to \mathbb{R}$ is well-defined and is a metric on $\mathcal{M}/_{\simeq}$.

Definition. For finite measure space (X, \mathcal{M}, μ) , the metric ρ_{μ} on $\mathcal{M}/_{\simeq}$ is the Nikodym metric and $(\mathcal{M}/_{\simeq}, \rho_{\mu})$ is the Nikodym metric space.

Note. If ν is a finite measure on \mathcal{M} , where (X, \mathcal{M}, μ) is a finite measure space, and ν is absolutely continuous with respect to μ , then for $A, B \in \mathcal{M}$ with $A \simeq B$ we have $\mu(A \triangle B) = 0$ and so $\nu(A \triangle B) = 0$. So by additivity and monotonicity (Proposition 17.1)

$$\nu(A) - \nu(B) = \nu((A \cap B) \cup (A \setminus B)) - \nu((A \cap B) \cup (B \setminus A))$$

= $\nu(A \cap B) + \nu(A \setminus B) - \nu(A \cap B) - \nu(B \setminus A)$
= $\nu(A \setminus B) - \nu(B \setminus A)$
= $0 - 0$ since $A \setminus B, B \setminus A \subset A \triangle B$ and $\nu(A \triangle B) = 0$
= $0.$

That is, if $A \simeq B$ then $\nu(A) = \nu(B)$. So we can properly define $\nu : \mathcal{M}/_{\simeq} \to \mathbb{R}$ as $\nu([A]) = \nu(A)$ for $A \in \mathcal{M}$.

Note. As we did in Chapter 7 when dealing with L^p spaces, we muddle the distinction between equivalence classes and elements of \mathcal{M} . So we simply represent $[A] \in \mathcal{M}/_{\simeq}$ as $A \in \mathcal{M}$ and hence treat ρ_{μ} as a metric on \mathcal{M} . We then use the notation $(\mathcal{M}, \rho_{\mu})$ for the Nikodym metric space. We now show that this metric space is complete.

Theorem 18.21. Let (X, \mathcal{M}, μ) be a finite measure space. Then the Nikodym metric space $(\mathcal{M}, \rho_{\mu})$ is complete; that is, every Cauchy sequence converges.

Note. The next lemma says that if ν is a finite measure on \mathcal{M} , where (X, \mathcal{M}, μ) is a finite measure space, which is continuous at set $E_0 \in \mathcal{M}$ (treating ν as mapping metric space $(\mathcal{M}, \rho_{\mu})$ into \mathbb{R}), then ν is uniformly continuous on \mathcal{M} .

Lemma 18.22. Let (X, \mathcal{M}, μ) be a finite measure space and ν a finite measure on \mathcal{M} . Let E_0 be a measurable set and $\varepsilon > 0$ and $\delta > 0$ be such that for any measurable set E,

if
$$\rho_{\mu}(E, E_0) < \delta$$
 then $|\nu(E) - \nu(E_0)| < \varepsilon/4$.

Then for any measurable sets A and B,

if
$$\rho_{\mu}(A, B) < \delta$$
 then $|\nu(A) - \nu(B)| < \varepsilon$.

Proposition 18.23. Let (X, \mathcal{M}, μ) be a finite measure space and ν a finite measure on \mathcal{M} that is absolutely continuous with respect to μ . Then ν induces a properly defined (i.e., "well-defined"), uniformly continuous function on the Nikodym metric space associated with (X, \mathcal{M}, μ) .

Note. For the remainder of this section we concentrate on sequences $\{\nu_n\}$ of finite measures on finite measure space (X, \mathcal{M}, ν) .

Definition. Let (X, \mathcal{M}) be a measurable space. A sequence $\{\nu_n\}$ of measures on \mathcal{M} converges setwise on \mathcal{M} to set function ν if

$$\nu(E) = \lim_{n \to \infty} \nu_n(E) \text{ for all } E \in \mathcal{M}.$$

Definition. Let (X, \mathcal{M}, μ) be a finite measure space. A sequence $\{\nu_n\}$ of finite measures on \mathcal{M} , each of which is absolutely continuous with respect to μ , is uniformly absolutely continuous (or equi absolutely continuous) with respect to μ provided for each $\varepsilon > 0$ there is $\delta > 0$ such that for any $E \in \mathcal{M}$ and any $n \in \mathbb{N}$,

if
$$\mu(E) < \delta$$
, then $\nu_n(E) < \varepsilon$.

Note. The next result relates uniformly absolutely continuous sequence of measures $\{\nu_n\}$ to an equicontinuous sequence $\{\nu_n : \mathcal{M} \to \mathbb{R}\}$ (with respect to ρ_{μ}) and to the sequence of Radon-Nikodym derivatives $\{d\mu/d\nu_n\}$. The proof is to be given in Exercise 18.64.

Proposition 18.24. Let $(X \mathcal{M}, \mu)$ be a finite measure space and $\{\nu_n\}$ a sequence of finite measures of \mathcal{M} each of which is absolutely continuous with respect to μ . Then the following are equivalent:

- (i) The sequence of measures {ν_n} is uniformly absolutely continuous with respect to μ.
- (ii) The sequence of functions $\{\nu_n : \mathcal{M} \to \mathbb{R}\}$ is equicontinuous with respect to the Nikodym metric ρ_{μ} .
- (iii) The sequence of Radon-Nikodym derivatives $\{d\mu/d\nu_n\}$ is uniformly integrable over X with respect to μ .

Note. The next result shows that if (uniformly absolutely continuous) sequence of finite measures $\{\nu_n\}$ converges setwise then the limit ν is a measure (and is uniformly absolutely continuous).

Theorem 18.25. Let (X, \mathcal{M}, μ) be a finite measure space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} that is uniformly absolutely continuous with respect to μ . If $\{\nu_n\}$ converges setwise on \mathcal{M} to ν , then ν is a measure of \mathcal{M} that is absolutely continuous with respect to μ .

Note. The next result shows that Theorem 18.25 holds if we drop the hypothesis that $\{v_n\}$ is uniformly absolutely continuous with respect to μ but require that $\{\nu_n(X)\}_{n=1}^{\infty}$ is a bounded sequence of real numbers. Royden and Fitzpatrick are smitten with the result and state (page 392): "The proof of this theorem rests beside the Uniform Boundedness Principle and the Open Mapping Theorem as one of the exceptional fruits of the Baire Category Theorem."

The Vitali-Hahn-Saks Theorem.

Let (X, \mathcal{M}, μ) be a finite measure space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} , each if which is absolutely continuous with respect to μ . Suppose that $\{\nu_n(X)\}$ is bounded and $\{\nu_n\}$ converges setwise on \mathcal{M} to ν . Then the sequence $\{\nu_n\}$ is uniformly continuous with respect to μ . Moreover, ν is a finite measure on \mathcal{M} that is absolutely continuous with respect to μ . **Note.** We now use the Vitali-Hahn-Saks Theorem to give a simplified result concerning the convergence of a sequence of measures.

Theorem 18.26. Nikodym.

Let (X, \mathcal{M}) be a measurable space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} which converges setwise on \mathcal{M} to the set function ν . Assume $\{\nu_n(X)\}$ is bounded. Then ν is a measure on \mathcal{M} .

Revised: 12/26/2018