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Chapter 19. General L
p Spaces:

Completeness, Duality, and Weak

Convergence

Note. As the title suggests, this chapter addresses Lp spaces of extended real val-

ued functions defined on measure spaces (X,M, µ). The “big results” have familiar

names: Hölder’s Inequality, Minkowski’s Inequality, the Riesz-Fischer Theorem, the

Riesz Representation Theorem. In addition, we finally have a Riesz Representation

Theorem for L∞ in Section 19.3. We see weak sequential convergence again and

introduce the idea of weak sequential compactness (which gives us results similar

to the familiar result from R that every bounded sequence of real numbers has a

convergent subsequence).

Section 19.1. The Completeness of Lp(X, µ), 1 ≤ p ≤ ∞

Note. We start with the same setup as we did with Lp(E) where E is Lebesgue

measurable. We give a version of the Riesz-Fisher Theorem for Lp(X,µ) where

1 ≤ p ≤ ∞.

Definition. Let (X,M, µ) be a measure space. Define F to be the set of all

measurable extended real-valued functions on X that are finite a.e. on X . Define

the relation f ∼= g if and only if f = g a.e. on X .
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Note. The relation ∼= is an equivalence relation, just as was the case in Chapter

7. So we denote the set of equivalence classes of F under ∼= as F/∼=. As usual, we

can define linear combinations of equivalence classes, α[f ] + β[g], where α, β ∈ R.

To do so, we may have to ignore a set of measure 0 to avoid “∞−∞.”

Definition. Define Lp(X,µ) as the set of equivalence classes [f ] for which
∫

E |f |p dµ <

∞.

Note. We have defined Lp(X,µ) by using a representative f of [f ]. However, if

f, g ∈ [f ], then g = g a.e. and
∫

E |f |p dµ =
∫

E |g|p dµ, so Lp(X,µ) is well-defined,

and similarly ‖[f ]‖p is well-defined. However, we have not yet shown that ‖ · ‖p

really is a norm.

Note. Since for all a, b ∈ R we have |a + b|p ≤ 2p(|f |p + |g|p) pointwise on X and

so by the Integral Comparison Test (page 373)

∫

X

|f + g|p dµ ≤ 2p

(
∫

X

|f |p dµ +

∫

X

|g|p dµ

)

< ∞.

So Lp(X,µ) is closed under addition. It is also closed under multiplication by real

numbers from Theorem 18.12. So Lp(X,µ) is a linear space. In addition, ‖[f ]‖p = 0

if and only if [f ] = 0 and ‖[αf ]‖p = |α|‖[f ]‖p for all α ∈ R.
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Definition. Equivalence class [f ] ∈ F is essentially bounded if there is some M ≥ 0

for which |f | ≤ M a.e. on X . Such M is called an essential upper bound for [f ].

Define L∞(X, u) as the set of all equivalence classes [f ] for which f is essentially

bounded. For [f ] ∈ L∞(X,µ), define the norm

‖f‖∞ = inf{M | M ≥ 0, |f | ≤ M a.e. on X}.

Note. As above, L∞(X,µ) and ‖[f ]‖∞ are well-defined. In addition, the properties

of a norm are easily seen to be satisfied by ‖ · ‖∞, so this really is a norm.

Note. We now drop the equivalence class verbiage and simply talk about functions

f as elements of Lp(X,µ). The proof of the following is similar to the proofs

given in Section 7.2, “The Inequalities of Young, Hölder, and Minkowski,” for the

corresponding results in the setting of Lebesgue measure.

Theorem 19.1. Let (X,M, µ) be a measure space, 1 ≤ p ≤ ∞, and q the

conjugate of p (that is, 1
p + 1

q = 1). If f ∈ Lp(X,µ) and g ∈ Lq(X,µ), then the

product fg ∈ L1(X,µ) and:

(i) Hölder’s Inequality.
∫

X |fg| dµ = ‖fg‖1 ≤ ‖f‖p‖g‖q. Moreover, if f 6= 0,

the function f∗ = ‖f‖1−p
p sgn(f)|F |p−1 ∈ Lq(X,µ),

∫

X ff∗ dµ = ‖f‖p and

‖f∗‖q = 1.

(ii) Minkowski’s Inequality. For 1 ≤ p ≤ ∞ and f, g ∈ Lp(X,µ), ‖f + g‖p ≤

‖f‖p + ‖g‖p. Therefore Lp(X,µ) is a normed linear space.

(iii) The Cauchy-Schwarz Inequality. Let f and g be measurable functions on X

for which f2 and g2 are integrable over X . Then their product fg also is

integrable over X and
∫

E
|fg| dµ ≤

√

∫

X
f2 dµ

√

∫

X
g2 dµ.
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Note. The following is a generalization of Corollary 7.3 (page 142) and its proof

is identical to that of Corollary 7.3.

Corollary 19.2. Let (X,M, µ) be a finite measure space and 1 ≤ p1 < p2 ≤ ∞.

Then Lp2(X,µ) ⊂ Lp1(X,µ). Moreover, for

c = [µ(X)](p2−p1)/(p1p2) if p2 < ∞ and c = [µ(X)]1/p2 if p2 = ∞

we have that ‖f‖p1
≤ ‖f‖p2

for all f ∈ Lp2(X,µ).

Note. Recall the following from Section 4.6, “Uniform Integrability: The Vitali

Convergence Theorem.”

Definition. A family F of measurable functions on measure space (X,M, µ) is

uniformly integrable over measurable E ⊂ X if for each ε > 0 there is a δ > 0 such

that for all f ∈ F we have

if A ⊂ E is measurable and µ(A) < δ then

∫

A

|f | dµ < ε.

Corollary 19.3. Let (X,M, µ) be a measure space and 1 < p ≤ ∞. If {fn} is a

bounded sequence of functions in Lp(X,µ), then {fn} is uniformly integrable over

X .

Note. We see from the proof of Corollary 19.3 that it in fact holds for any family F

of measurable functions in Lp(X,µ) as long as the family of functions is bounded.
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Definition. For a linear space V with norm ‖ · ‖, a sequence {vk} ⊂ V is rapidly

Cauchy if there is a convergent series of positive real numbers

∞
∑

k=1

εk < ∞ for which

‖vk+1 − vk‖ ≤ ε2
k for all k ∈ N.

Note. We showed that Lp(E) for Lebesgue measurable E is complete (The Riesz-

Fischer Theorem) using rapidly Cauchy sequences. We follow the same approach

here. Recall that, in a normed linear space, every rapidly Cauchy sequence is

Cauchy, and every Cauchy sequence has a rapidly Cauchy subsequence. This is

Proposition 7.5.

Lemma 19.4. Let (X,M, µ) be a measure space and 1 ≤ p ≤ ∞. Then every

rapidly Cauchy sequence in Lp(X,µ) converges to a function in Lp(X,µ), both with

respect to the Lp(X,µ) norm and pointwise a.e. in X .

The Reisz-Fischer Theorem.

Let (X,M, µ) be a measure space and 1 ≤ p ≤ ∞. Then Lp(X,µ) is a Banach

space. Moreover, if a sequence in Lp(X,µ) converges in Lp(X,µ) to f ∈ Lp(X,µ),

then a subsequence converges pointwise a.e. on X to f .

Note. The following uses the Simple Approximation Theorem and shows the

central role that simple functions play.
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Theorem 19.5. Let (X,M, µ) be a measure space and 1 ≤ p < ∞. Then the

subspace of simple functions on X that vanish outside a set of finite measure is

dense in Lp(X,µ).

Recall. A sequence {fn} is tight over X in (X,M, µ) if for each ε > 0, there is a

subset X0 of X that has finite measure and

∫

X\X0

|fn| dµ < ε for all n ∈ N.

Note. The proof of the following uses the Vitali Convergence Theorem and relates

convergence of a sequence with respect to the Lp norm to uniform integrability and

tightness. We leave the proof as Exercise 19.1.B.

The Vitali Lp Convergence Theorem.

Let (X,M, µ) be a measure space and 1 ≤ p < ∞. Suppose {fn} is a sequence

in Lp(X,µ) that converges pointwise a.e. to f and suppose f ∈ Lp(X,µ). Then

{fn} → f in Lp(X,µ) if and only if {|f |p} is uniformly continuous and tight.
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