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Section 19.3. The Kantorovitch Representation Theorem

for the Dual of L∞(X, µ)

Note. In Section 8.1, “The Riesz Representation for the Dual of Lp, 1 ≤ p <∞,”

we proved that the dual space of Lp(E) is Lq(E) for 1 ≤ p < ∞ and 1/p +

1/q = 1 where E ⊂ R is a Lebesgue measurable set. In Section 19.2, “The Riesz

Representation for the Dual of Lp(X,µ), 1 ≤ p < ∞,” we proved that the dual

space of Lp(X,µ) is Lq(X,µ) for 1 ≤ p < ∞. For 1 < p < ∞, we have Lp and Lq

as duals of each other (well, up to isometric isomorphism). The dual of L1 is L∞,

but we will see that the dual of L∞ is not L1. In this section we characterize the

dual of L∞. Surprisingly, it involves signed measures.

Definition. Let (X,M) be a measurable space and the set function ν : M → R

be finitely additive. For E ∈ M, the total variation of ν over E, denoted |ν|(E), is

|ν|(E) = sup
n
∑

k=1

|ν((Ek)|,

where the supremum is taken over finite disjoint collections {Ek}
∞
k=1

of sets in M

that are contained in E. We say ν is a bounded finitely additive signed measure

provided |ν|(X) < ∞. The total variation of such ν is denoted ‖ν‖var and also

defined as ‖ν‖var = |ν|(E).
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Note. Let ν : M → R be a measure. Then for finite disjoint collections {Ek}
n
k=1

of sets in M that are contained in E ∈ M we have

ν (∪· n
k=1Ek) =

n
∑

k=1

ν(Ek) by countable additivity

≤ ν(E) by monotonicity, Proposition 17.1(ii),

so sup
∑n

k=1
|ν(Ek)| =

∑n
k=1

ν(Ek) ≤ ν(E). With {E1} = {E},
∑

k=1
ν(Ek) =

ν(E1) = µ(E), and hence |ν|(E) = ν(E) for all E ∈ M. In particular, ‖ν‖var =

|ν|(X) = ν(X).

Definition. If ν : M → R is a signed measure with Jordan decomposition ν =

ν+−ν−. We define the total variation of ν in Section 17.2, “Signed Measures: The

Hahn and Jordan Decompositions,” as ‖ν‖var = |ν|(X) = ν+(X)+ ν−(X) (see also

Exercise 17.16), consistent with the definition here.

Note. We now, for the first time, define integrals with respect to signed measures.

Recall that, by definition (see Section 17.2), a signed measure assumes at most one

of the values +∞,−∞.

Definition. Let ν : M → R be a bounded finite additive signed measure on M

and let ϕ =
∑n

k=1
ckχEk

be a measurable simple function. Define the integral of ϕ

over X with respect to ν as

∫

X

ϕdν =

n
∑

k=1

ckν(Ek).
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Note. The previous definition does not appeal to a canonical representation of

ϕ (as we did directly in Section 4.1 and indirectly in Section 18.2), so we need

to address whether
∫

X
ϕdν is well-defined (or “properly defined” as Royden and

Fitzpatrick say). It is, in fact, well-defined. This was shown in Lemma 4.1 for the

Lebesgue integral of simple functions. The proof of Lemma 4.1 only uses finite

additivity of Lebesgue measure (and some elementary set theory), and we have

finite additivity (in fact, countable additivity) by the definition of a signed measure.

So Lemma 4.1 and the fact that
∫

X
ϕdν is well-defined holds here. Linearity and

monotonicity of simple functions in the Lebesgue setting is given in Proposition

4.2 and the proof only depends on Lemma 4.1. So we can establish linearity and

monotonicity for signed measures in an identical way.

Note. For ϕ =
∑n

k=1
ckχEk

we have

∣

∣

∣

∣

∫

X

ϕdν

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

k=1

ckν(Ek)

∣

∣

∣

∣

∣

≤

n
∑

k=1

|ck||ν(Ek)| ≤ ‖ϕ‖∞

n
∑

k=1

|ν(Ek)|

≤ ‖ϕ‖∞

(

n
∑

k=1

|ν(Ek) + |ν (X \ ∪n
k=1Ek)|

)

≤ ‖ϕ‖∞ sup

m
∑

k=1

|ν(Ek)| = ‖ϕ‖∞‖ν‖var. (17)

Note. Let f : X → R be a bounded measurable function. By the Simple Ap-

proximation Lemma (Section 18.1) there are sequences {ψn} and {φn} of simple

functions on X for which ϕn ≤ ϕn+1 ≤ f ≤ ψn+1 ≤ ψn and 0 ≤ ψn − ϕn ≤ 1/n on

X for all n ∈ N. So there is a sequence, say {ϕn}, which converges uniformly to f
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on X . By the previous note and linearity we have for all n, k ∈ N:
∣

∣

∣

∣

∫

X

(ϕn+k − ϕn) dν

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

ϕn+k dν −

∫

X

ϕn dν

∣

∣

∣

∣

≤ ‖ν‖var‖ϕn+k − ϕn‖∞.

Definition. Let f : X → R be a bounded measurable function on X . Let ν be a

bounded finitely additive signed measure on (X,M). Define the integral
∫

X

f dν = lim
n→∞

∫

X

ϕn dν

where {ϕn} is a sequence of simple functions which converges uniformly to f on X .

Note. Since ν is bounded then ‖ν‖var < ∞. Since {ϕn} converges uniformly on X

to f then it converges to f with respect to ‖·‖∞ on X . So if {ψn} is also a sequence

converging uniformly to f then for given ε > 0 there are N1, N2 ∈ N such that for

all n ≥ N1 we have ‖ϕn − f‖∞ < ε/2 and for all n ≥ N2 we have ‖ψn − f‖∞ < ε/2.

So for n ≥ max{N1, N2} we have

‖ϕn − ψn‖∞ = ‖ϕn − f + f − ψn‖∞ ≤ ‖ϕn − f‖∞ + ‖ψn − f‖∞ <
ε

2
+
ε

2
= ε,

and
∣

∣

∣

∣

∫

X

ϕn dν −

∫

X

ψn dν

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

(ϕn − ψn) dν

∣

∣

∣

∣

≤ ‖ν‖var‖ϕn − ψn‖∞ by (17)

< ‖ν‖var ε.

Since ‖ν‖var < ∞ (because ν is a bounded finitely additive signed measure), then

limn→∞

∫

X
ϕn dν = limn→∞

∫

X
ψn dν and so

∫

X
f dν is well-defined (that is, inde-

pendent of the sequence of simple functions which converges uniformly to f on

X).
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Note. As in the Riesz Representation Theorem of Section 19.2, we expect to find

an isometric isomorphism T from L∞(X,µ) to its dual space where T is based

on bounded linear functionals of the form Tf where Tf is an integral and f is an

element of the dual space. We would also expect the integrals to be with respect to

measure µ but, we we will see, the integrals in fact involve bounded finitely addition

signed measures. Since L∞(X,µ) involves equivalence classes of essentially bounded

measurable functions on X , we will need
∫

X
f dν =

∫

X
g dν if and only if f = g

µ-a.e. on X (so that a bounded linear functional defined using an integral with

respect to ν will map functions in the same equivalence class of L∞(X,µ) to the

same real number; that is, so the bounded linear functionals are well-defined). But

if there is E ∈ M for which µ(E) = 0 and ν(E) 6= 0 then we can take f = 0 on X

and g =







1 on E

0 on X \ E
so that f = g µ-a.e. but

∫

X

f dν = 0 6= ν(E) =

∫

E

a dν =

∫

E

g dν =

∫

X

gχE dν =

∫

X

f dν.

In order to avoid this, we only consider bounded finitely additive signed measures

which avoid this behavior on sets of µ-measure zero. Recall that ν is absolutely

continuous with respect to µ if E ∈ M and µ(E) = 0 implies ν(E) = 0 (see Section

18.4, “The Radon-Nikodym Theorem”).

Definition. Let (X,M, µ) be a measure space. Denote by BFA(X,M, µ) the

normed linear space of bounded finitely additive signed measures ν on M that are

absolutely continuous with respect to µ in the sense that if E ∈ M and µ(E) = 0,

then ν(E) = 0. The norm of ν ∈ BFA(X,M, µ) is the total variation norm ‖ν‖var.
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Note. We leave as Exercise 19.3.A the proof that BFA(X,M, µ) is in fact a

normed linear space. Notice that if ϕ and ψ are simple functions on X which are

equal to µ-a.e. then they are equal ν-a.e. and so
∫

X
ϕdν =

∫

X
ψ dν. Therefore is

f and g are bounded (or essentially bounded) on X and equal µ-a.e. then (since

the integral is defined in terms of simple functions)
∫

X
f dν =

∫

X
g dν. Therefore,

the integral of an element of L∞(X,µ) (that is, a equivalence class of µ-a.e. equal

essentially bounded functions) is well-defined. Also, from (17), for f ∈ L∞(X,µ)

and ν ∈ BFA(X,M, µ) we have
∣

∣

∫

X
f dν

∣

∣ ≤ ‖ν‖var‖f‖∞. We now characterize the

duals space of L∞(X,µ) similar to the Reisz Representation Theorem for Lp(X,µ)

where 1 ≤ p <∞ as stated in the previous section

Theorem 19.7. The Kantorovitch Representation Theorem.

let (X,M, µ) be a measure space. For signed measure ν ∈ BFA(X,M, µ) define

Tν : L∞(X,µ) → R by

Tν(f) =

∫

X

f dν for all r ∈ L∞(X,µ).

Then T : BFA(X,M, µ) → L∞(X,µ)∗, which maps ν to Tν, is an isometric

isomorphism of the normed linear space BFA(X,M, µ) onto the dual of L∞(X,µ).

Note. So the dual space of L∞(X,µ) “is” the linear space BFA(A,M, µ) of

all bounded finitely additive measures on M that are absolutely continuous with

respect to µ.
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Note. On page 496, Royden and Fitzpatrick give an argument based on the

Kantorovitch Representation Theorem and a result of Chapter 14, “Duality for

Normed Linear Spaces,” that there is a bounded set function on the Lebesgue

measurable subsets of [a, b] that is absolutely continuous with respect to Lebesgue

measure, is finitely additive by not countably additive. Though the existence of

such a set function is guaranteed, no such function has been explicitly exhibited.

Note. Leonid V. Kantorovitch (January 16, 1912–April 7, 1986; also spelled “Kan-

torovich”) was a Russian mathematician active in research from the age of 15. He

contributed to mathematics, economics, and computer science and published over

300 papers and books. He made contributions in functional analysis, approxima-

tion theory, and numerical analysis/linear programming. His developed an interest

in economics in 1938 and ultimately was a joint winner of the Nobel Prize in eco-

nomics in 1975. The result of this section was apparently in:

L. V. Kantorovich and B. S. Vulich, “Sur la représentation des opera-

tions linéaires,” Compositio Math., 5 (1938), 119–165.

For a reference to this, see page 572 of G. G. Lorentz and D. G. Wertheim, “Repre-

sentation of Linear Functions on Köthe Spaces, Canadian Journal of Mathematics

5(4) (1953) 568–575, available on books.google.com (as of January 20, 2019).
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This information is based on the MacTutor History of Mathematics Archive www-

history.mcs.st-and.ac.uk/Biographies/Kantorovich.html (where the image

was accessed) and en.wikipedia.org/wiki/Leonid Kantorovich.
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