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Section 2.2. Lebesgue Outer Measure

Note. We now introduce a type of measure with an eye towards the requirement

that m(I) = `(I) for intervals (at least, for open intervals).

Definition. Let A ⊂ R and let {In} represent a countable collection of bounded

open intervals such that A ⊂ ∪In. The outer measure of A is

m∗(A) = inf
A⊂∪In

{ ∞∑
n=1

`(In)

}
where the infimum is taken over all such open interval coverings of A.

Note. Since m∗(A) is defined as an infimum, then m∗(A) is defined for every

A ∈ P(R). m∗(∅) = 0 and if A is finite in cardinality then m∗(A) = 0. Also,

if A ⊂ B then m∗(A) ≤ m∗(B) (i.e., m∗ satisfies monotonicity). Royden and

Fitzpatrick justify this with a brief comment. Here’s a detailed proof.

Lemma 2.2.A. Outer measure is monotone. That is, if A ⊂ B then m∗(A) ≤

m∗(B).

Note. The following result shows that we are on the right track for the condition

m∗(I) = `(I). Here and throughout we have that the length of an unbounded

interval is ∞.
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Proposition 2.1. The outer measure of an interval is its length.

Note. Now for desired property (2) (translation invariance).

Proposition 2.2. Outer measure is translation invariant; that is, for any set A

and number y, m∗(A + y) = m∗(A).

Note. Now for a result related to desired property (3), but not property (3) itself.

Proposition 2.3. Outer measure is countably subadditive. That is, if {Ek}∞k=1 is

any countable collection of sets then

m∗

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek).

Note. In conclusion, outer measure m∗ satisfies:

1. For any interval I, m∗(I) = `(I) (Proposition 2.1).

2. m∗ is translation invariant (Proposition 2.2).

3. m∗ is countably subadditive (Proposition 2.3).

4. m∗ is defined on P(R).

So m∗ is close to satisfying the desired four properties. However, we must have

countable additivity so that we can use the measure for the basis of integration.
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In the next section we put a condition on a set (called the “Carathéodory splitting

condition”) and consider the collection of all such sets satisfying this condition. We

will see that m∗ is countably additive on this collection of sets.

Exercise 2.5. [0, 1] is not countable.

Note. The following result is further motivation for studying Gδ sets.

Exercise 2.7. For any bounded set E, there is a Gδ set G for which E ⊂ G and

m∗(G) = m∗(E). Set G is called the measurable cover of E (see Theorem 3.1 of

the supplemental notes to Section 2.3).
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