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Section 2.3. The σ-Algebra of Lebesgue Measurable Sets

Note. In Theorem 2.18 we will see that there are disjoint sets A and B such that

m∗(A ∪· B) < m∗(A) + m∗(B)

and so m∗ is not countably additive (it is not even finitely additive). We must have

countable additivity in our measure in order to use it for integration. To accomplish

this, we restrict m∗ to a smaller class than P(R) on which m∗ is countably additive.

As we will see, the following condition will yield a collection of sets on which m∗ is

countably additive.

Definition. Any set E is (Lebesgue) measurable if for all A ⊂ R,

m∗(A) = m∗(A ∩ E) + m∗(A ∩ Ec).

This is called the Carathéodory splitting condition.

Note. It certainly isn’t clear that the Carathéodory splitting condition leads to

countable additivity, but notice that it does involve the sum of measures of two

disjoint sets (A ∩ E and A ∩ Ec).

Note. The Carathéodory splitting condition, in a sense, requires us to “check”

all ℵ2 subsets A of R in order to establish the measurability of a set E. It is

shown in Problem 2.20 that if m∗(E) < ∞, then E is measurable if and only if

m∗((a, b)) = m∗((a, b)∩E)+m∗((a, b)∩Ec). This is a significant result, since there

are “only” ℵ1 intervals of the form (a, b).
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Note. Recall that we define a function to be Riemann integrable if the upper

Riemann integral equals the lower Riemann integral. We might expect to define

“measurable” in a similar way. The following discussion of inner measure is based

on Real Analysis by Bruckner, Bruckner, and Thomson, Prentice Hall, (1997).

Definition. Let λ((a, b)) = `((a, b)) = b − a, with λ((a, b)) = ∞ if (a, b) is

unbounded. For open set G = ∪·∞k=1Ik (where the Ik are open intervals), define

λ(G) =
∞∑

k=1

λ(Ik), and if G = ∅ define λ(G) = 0.

Definition. Let E be a closed and bounded set with a = glb(E) and b = lub(E).

Define λ(E) = b− a− λ((a, b) \ E).

Note. For closed E, (a, b)\E = (a, b)∩Ec is open. Also, λ(E)+λ((a, b)\E) = b−a.

Definition. Let E ⊂ R. Then

λ∗(E) = inf{λ(G) | E ⊂ G, G is open}

is the (Lebesgue) outer measure of E.

Note. This definition is equivalent to Royden’s definition of outer measure.
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Definition. Let E ⊂ R. Then λ∗(E) = sup{λ(F ) | F ⊂ E, F is compact} is the

inner measure of E. If E = ∅, define λ∗(E) = 0.

Note. We have seen that outer measure λ∗ is: translation invariant, monotone,

λ∗(I) = `(I) for all intervals, and is countably subadditive. We can similarly show

that inner measure λ∗ is: translation invariant, monotone, λ∗(I) = `(I), and is

countably superadditive:

λ∗ (∪·∞k=1Ek) ≥
∞∑

k=1

λ∗(Ek).

Note. In Royden and Fitzpatrick’s Problem 2.7 and Theorem 2.11 (with a few

additional details) we have that for all E ⊂ R: (1) There is a Gδ set G such

that E ⊂ G and λ∗(E) = λ∗(G), and (2) there is an Fσ set F such that F ⊂ E

and λ∗(E) = λ∗(F ). Set G is called the outer approximation (outer content or

measurable cover) of E and set F is called the inner approximation (inner content

or measurable kernel) of set E.

Note. The following is the definition of “measurable” which parallels the definition

of “Riemann integrable.”

Definition. Let E ⊂ R be bounded. If λ∗(E) = λ∗(E) then E is said to be

(Lebesgue) measurable with (Lebesgue) measure m(E) = λ∗(E). If E is unbounded,

then E is measurable if E ∩ I is measurable for every finite interval I and m(E) =

λ∗(E).
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Note. Since this definition of measurable is based only on bounded sets and we can

establish the relationship for all bounded E ⊂ R (Bruckner, Bruckner, Thomson):

λ∗(E) = b− a + λ∗([a, b] \ E)

(where a = glb(E) and b = lub(E)), then we see that inner measure is ultimately

dependent only on outer measure. This is how Royden and Fitzpatrick are able to

develop measure theory without reference to inner measure.

Note. One can show that the Carathéodory splitting condition on set E implies

that λ∗(E) = λ∗(E) AND that λ∗(E) = λ∗(E) implies the Carathéodory splitting

condition on set E. Therefore the splitting condition approach is equivalent to the

inner/outer measure approach.

Note. Henri Lebesgue (1875–1941) was the first to crystallize the ideas of mea-

sure and the integral studied in Part 1 of our class. In his doctoral dissertation,

Intégrale, Longueur, Aire (“Integral, Length, Area”) of 1902, he presented the def-

initions of inner and outer measure equivalent to the approach above of Bruckner

and Bruckner. His definition of “measurable” is the same as that given above (no-

tice the similarity to the definition of Riemann integral which is based on upper

and lower Riemann integrals). Lebesgue published his results in 1902, with the

same title as his dissertation, in Annali di Matematica Pura ed Applicata, Series 3,

VII(4), 231–359, available online (in French, or course). Carathéodory introduced

his splitting condition in 1914. His approach to outer measure and measurability

in a more abstract setting is explored in Part 3 of the text (in particular, Section

https://archive.org/stream/annalidimatemat01unkngoog#page/n252/mode/2up
https://archive.org/stream/annalidimatemat01unkngoog#page/n252/mode/2up


2.3. Lebesgue Measurable Sets 5

20.4). His results appeared in Über das lineare Mass von Punktmengen—eine Ver-

allgemeinerung des Längenbegriffs [“About the linear measure of sets of points—a

generalization of the concept of length”] Nachrichten von der Gesellschaft der Wis-

senschaften zu Göttingen, Mathematisch-Physikalische Klasse [“News of the Society

of Sciences in Göttingen, Mathematics and Physical Class”] (1914), 404–426. These

websites were last accessed 3/11/2016. We now return to Royden and Fitzpatrick’s

approach. . .

Note 2.3.A. Since A∩E and A∩Ec are disjoint, then by the countable subaddi-

tivity of outer measure m∗,

m∗(A) ≤ m∗(A ∩ E) + m∗(A ∩ Ec).

Therefore to show that E is measurable, we need only show that for all A ⊂ R,

m∗(A) ≥ m∗(A ∩ E) + m∗(A ∩ Ec).

(This appears on page 35 of Royden and Fitzpatrick.) This holds trivially for all A

where m∗(A) = ∞, so we see that to show E is measurable we need only to consider

sets A of finite outer measure. Also, if E satisfies this inequality, then so does Ec.

In addition E = ∅ and E = R satisfy this inequality and so are measurable. Our

goal in this section is to show that all sets satisfying the splitting condition form a

σ-algebra (“the σ-algebra of Lebesgue measurable sets”).

Proposition 2.4. If m∗(E) = 0, then E is measurable.

http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002504006
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002504006
http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002504006


2.3. Lebesgue Measurable Sets 6

Note. We use the notation Ec to indicate R \ E. The notation Ẽ was used

in the more general setting where the universal set (usually denoted X) was not

necessarily R.

Note. We denote the set of all Lebesgue measurable sets as M. We have seen

that M includes ∅, R, and all sets of outer measure 0. Also, M is closed under

complements by Note 2.3.A.

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Note. Proposition 2.5, along with the previous observation, implies that M is an

algebra of sets. The following three results establish that M is in fact a σ-algebra

and that m∗ is countably additive on M.

Proposition 2.6. Let A ⊂ R and let {Ek}n
k=1 be a finite disjoint collection of

measurable sets. Then

m∗ (A ∩ [∪· n
k=1Ek]) =

n∑
k=1

m∗(A ∩ Ek),

In particular, when A = R we see that m∗ is finite additive on M.

Proposition 2.7. The union of a countable collection of measurable sets is mea-

surable.

Note 2.3.B. Since M is closed under compliments and closed under countable

unions, then M is a σ-algebra.
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Note. We jump ahead a bit to prove countable additivity of m∗ on M.

Proposition 2.13. (From Section 2.5.) If {Ek}∞k=1 ⊂M and the Ek are pairwise

disjoint, then

m∗ (∪·∞k=1Ek) =
∞∑

k=1

m∗(Ek).

Note. We know that m∗(I) = `(I) for each interval, but we have not yet shown

that intervals are measurable.

Proposition 2.8. Every interval is measurable.

Note. We now see that M is a σ-algebra containing all open intervals. Therefore

M contains all Borel sets.

Proposition 2.10. The translate of a measurable set is measurable.

Note. In conclusion, outer measure m∗ on σ-algebra M satisfies:

1. For any interval I, m∗(I) = `(I) (Proposition 2.1).

2. m∗ is translation invariant (Proposition 2.2).

3. m∗ is countably additive on M (Proposition 2.13).

4. M 6= P(R), as we will see in Section 2.6, “Nonmeasurable Sets.”

In Section 2.5, “Countable Additivity, Continuity, and the Borel-Cantelli Lemma,”

we define Lebesgue measure as m∗ restricted to M.
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