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Section 2.4. Outer and Inner Approximation

of Lebesgue Measurable Sets

Note. In this section we give several conditions on E ⊂ R which are equivalent

to the measurability of E. In the process, we “approximate” measurable sets with

more familiar sets.

Lemma 2.4.A. The Excision Property.

If A is measurable and m∗(A) < ∞ and A ⊂ B then m∗(B \A) = m∗(B)−m∗(A).

Note. You showed in Problem 2.7 that for any bounded set E, there is a Gδ set

G such that E ⊂ G and m∗(G) = m∗(E). We see in the following theorem that a

similar result holds for measurable sets, and also that there is an analogous result

for an Fσ subset of E.

Theorem 2.11. Let E ⊂ R. Then each of the following are equivalent to the

measurability of E:

1. For each ε > 0, there is an open set O containing E for which m∗(O \E) < ε.

2. There is a Gδ set G containing E for which m∗(G \ E) = 0.

3. For each ε > 0, there is a closed set F contained in E for which m∗(E\F ) < ε.

4. There is an Fσ set F contained in E for which m∗(E \ F ) = 0.
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Note. The Gδ set G of Theorem 2.11 is the outer approximation of measurable

E and the Fσ set F is called the inner approximation. Notice that Theorem 2.11

tells us that we can “approximate” a measurable set E with both a Gδ set G and

an Fσ set F . The approximation is done in the sense of measure as spelled out in

Theorem 2.11. Notice that F and G are Borel and so measurable (see the Note after

Proposition 2.8 in the class notes). Therefore by countable additivity (Proposition

2.13), m∗(E ∪· (G \ E)) = m∗(E) + m∗(G \ E) = m∗(G) and so m∗(E) = m∗(G).

Similarly, m∗(E) = m∗(F ). We can now conclude that: Every measurable set is

“almost” an Fσ set and “almost” a Gδ set. More precisely, every measurable set

(a) differs from an Fσ subset by a set of measure zero, and (b) differs from a Gδ

superset by a set of measure zero.

Note. In the study of inner and outer measure (see the supplement to the notes for

Section 2.3) we introduce the measurable cover G and measurable kernal F of (not

necessarily measurable) set E as Gδ set G and Fσ set F such that F ⊂ E ⊂ G where

the inner measure of F equals the inner measure of E and the outer measure of G

equals the outer measure of E. Notice that these ideas do not involve measurable

sets! In this general setting, we do not necessarily have an equality of the inner

measure of F and the outer measure of G. In conclusion, “inner approximation”

and “outer approximation” are associated with measurable sets, and “measurable

kernal” and “measurable cover” are associated with any set of real numbers.
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Definition. The symmetric difference of sets A and B, denoted A∆B, is A∆B =

(A \ B) ∪ (B \ A).

Note. If A and B are measurable sets of real numbers then, since A \B and B \A

are disjoint, by countable additivity (Proposition 2.13),

m
∗(A∆B) = m

∗(A \ B) + m
∗(B \ A).

Theorem 2.12. Let E ∈ M, m∗(E) < ∞. Then for each ε > 0, there is a finite

disjoint collection of open intervals {Ik}
n

k=1
for which, if O = ∪· n

k=1
Ik, then

m
∗(E∆O) = m

∗(E \ O) + m
∗(O \ E) < ε.

Note. The text says that this result shows that finite measurable sets are “nearly”

a finite union of disjoint open intervals. In general, when we can approximate a set

(or, later, a function) to within an arbitrary given ε, we will use the word “nearly.”
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