Section 2.6. Nonmeasurable Sets (Royden and Fitzpatrick, 4th Edition)

Note. Your humble instructor prefers the presentation on nonmeasurable sets given in Royden's 3rd edition of Real Analysis (given in the notes as a supplement to this section). The "construction" presented here is just an alternative approach to the standard Vitali construction given in the supplement.

Lemma 2.16. Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers Λ for which the collection of translates of $E,\{E+\lambda\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Definition. For any nonempty set E of real numbers, two points in E are rationally equivalent if their difference is rational.

Note. Rational equivalence is an equivalence relation (reflexive, symmetric, and transitive) or any nonempty set of real numbers. Recall that an equivalence relation on a set partitions the set into equivalence classes.

Definition. Let E be a nonempty set of real numbers with rational equivalence as an equivalence relation on E. A choice set is a set $\mathcal{C}_{E} \subset E$ such that \mathcal{C}_{E} contains exactly one element of each equivalence class under rational equivalence.

Note. A choice set exists by the Axiom of Choice (see page 5). Notice that the choice set \mathcal{C}_{E} satisfies the following two properties:
(i) the difference of two points in \mathcal{C}_{E} is irrational,
(ii) for each point $x \in E$, there is a point $c \in \mathcal{C}_{E}$ for which $x=c+q$ for some $q \in \mathbb{Q}$.

Notice that the first property implies that:

For any set $\Lambda \subset \mathbb{Q}$, the collection $\left\{\mathcal{C}_{E}+\lambda\right\}_{\lambda \in \Lambda}$ is disjoint.

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.

Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

