Section 2.6. Nonmeasurable Sets (Royden and Fitzpatrick, 4th Edition)

Note. Your humble instructor prefers the presentation on nonmeasurable sets given in Royden's 3rd edition of *Real Analysis* (given in the notes as a supplement to this section). The "construction" presented here is just an alternative approach to the standard Vitali construction given in the supplement.

Lemma 2.16. Let E be a <u>bounded</u> measurable set of real numbers. Suppose there is a <u>bounded</u> countably infinite set of real numbers Λ for which the collection of translates of E, $\{E + \lambda\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Definition. For any nonempty set E of real numbers, two points in E are *rationally* equivalent if their difference is rational.

Note. Rational equivalence is an equivalence relation (reflexive, symmetric, and transitive) or any nonempty set of real numbers. Recall that an equivalence relation on a set partitions the set into equivalence classes.

Definition. Let E be a nonempty set of real numbers with rational equivalence as an equivalence relation on E. A *choice set* is a set $C_E \subset E$ such that C_E contains exactly one element of each equivalence class under rational equivalence. Note. A choice set exists by the Axiom of Choice (see page 5). Notice that the choice set C_E satisfies the following two properties:

- (i) the difference of two points in C_E is irrational,
- (ii) for each point $x \in E$, there is a point $c \in C_E$ for which x = c + q for some $q \in \mathbb{Q}$.

Notice that the first property implies that:

For any set $\Lambda \subset \mathbb{Q}$, the collection $\{\mathcal{C}_E + \lambda\}_{\lambda \in \Lambda}$ is disjoint.

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.

Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

 $m^*(A \cup B) < m^*(A) + m^*(B).$

Revised: 10/8/2016