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Chapter 20. The Construction of

Particular Measures

Note. In this chapter, we return to the “concrete” setting of measure theory, R.

But first, we define a measure on the Cartesian product of two (abstract) measure

spaces. This approach is used to define a measure on R
n which in turn produces a

Lebesgue integral for measurable functions defined on R
n.

Section 20.1. Product Measures:

The Theorems of Fubini and Tonelli

Note. In this section, we use the Carathéodory-Hahn Theorem to define a measure

on the Cartesian product of two measure spaces in terms of the measures on the

constituent spaces. This section is in the abstract setting, but in the next section

we consider R
2 and R

n.

Definition. Let (X,A, µ) and (Y,B, ν) be two measure spaces. We consider the

Cartesian product X ×Y and for A ⊂ X and B ⊂ Y , we call A×B a rectangle. If

A ∈ A and B ∈ B, we call A × B a measurable rectangle provided µ(A) < ∞ and

ν(B) < ∞.
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Note. The obvious choice for the measure of A×B is µ(A) ·ν(B). In order to show

that this works, we first need a lemma concerning decompositions of measurable

rectangles into measurable rectangles.

Lemma 20.1. Let {Ak × Bk}
∞
k=1

be a countable disjoint collection of measurable

rectangles whose union also is a measurable rectangle A × B. Notice that index k

ranges over ALL of the rectangles which compose A × B (so there is no Ai × Bj

where i 6= j). Then

µ(A) · ν(B) =

∞
∑

k=1

µ(Ak) · ν(Bk).

Note. The following result allows us to use the Carathéodory-Hahn Theorem to

produce a measure on X × Y using measurable rectangles.

Proposition 20.2. Let R be the collection of measurable rectangles in X × Y

and for a measurable rectangle A × B define λ(A × B) = µ(A) · ν(B). Then R is

a semiring and λ : R → [0,∞] is a premeasure.

Definition. Let (X,A, µ) and (Y,B, ν) be measure spaces, R the collection of

measurable rectangles in X×Y , and λ the premeasure defined on R by λ(A×B) =

µ(A) · ν(B) for A × B ∈ R. The product measure λ = µ × ν is the Carathéodory

extension of λ : R → [0,∞] defined on the σ-algebra of (µ×ν)∗-measurable subsets

of X × Y .



20.1. Product Measures 3

Definition. Let E ⊂ X × Y and let f be an extended real valued function on E.

For point x ∈ X , the set Ex = {y ∈ Y | (x, y) ∈ E} ⊂ Y is the x-section of set

E and the function f(x, ·) defined on Ex as f(x, ·)(y) = f(x, y) is the x-section of

function f .

Note. We are interested in computing double integrals using iterated integration

(as in Calculus III). The “Theorems of Fubini and Tonelli” are the main results on

this.

Fubini’s Theorem.

Let (X,A, µ) and (Y,B, ν) be measure spaces and let ν be complete. Let f be

integrable over X ×Y with respect to the product measure µ×ν. Then for almost

all x ∈ X , the x-section of f , f(x, ·)(y), is integrable over Y with respect to ν and

∫

X×Y

f d(µ × ν) =

∫

X

[
∫

Y

f(x, y) dν(y)

]

dµ(x).

Note. So Fubini’s Theorem relates the double integral to the iterated integral first

with respect to y and then with respect to x. We need several preliminary results

before we can prove Fubini’s Theorem.
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Lemma 20.3. Let E ⊂ X ×Y be an Rσδ set for which (µ×ν)(E) < ∞. Then for

all x ∈ X , the x-section of set E, Ex, is a ν-measurable subset of Y , the function

x 7→ ν(Ex) for x ∈ X is a µ-measurable function and

(µ × ν)(E) =

∫

X

ν(Ex) dµ(x).

Note. The conclusion of the following result is the same as Lemma 20.3, but

the setting now involves sets of product measure zero. Of course, we can have

(µ × ν)(E) = 0 yet have the x-section not be of ν-measure 0 (or even necessarily

be ν-measurable). This could occur if the “µ part” of E has measure zero (with a

rectangle, for example).

Lemma 20.4. Assume the measure ν is complete. Let E ⊂ X × Y be measurable

with respect to µ × ν. If (µ × ν)(E) = 0, then almost all x ∈ X , the x-section of

E, Ex, is ν-measurable and ν(Ex) = 0. Therefore

0 = (µ × ν)(E) =

∫

X

ν(Ex) dµ(x) = 0.

Note. The following result is similar to the previous two, but deals with general

measurable sets E of finite measure.
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Proposition 20.5. Assume the measure ν is complete. Let E ⊂ X × Y be

measurable with respect to µ× ν and (µ× ν)(E) < ∞. Then for almost all x ∈ X ,

the x-section of E, Ex, is a ν-measurable subset of Y , the function x 7→ ν(Ex) is

µ-measurable for all x ∈ X , and

(µ × ν)(E) =

∫

X

ν(Ex) dµ(x).

Note. The following gets us much closer to Fubini’s Theorem and shows that

double integrals of simple functions can be calculated using iterated integrals.

Theorem 20.6. Assume measure ν is complete. Let φ : X × Y → R be a simple

function that is integrable over X × Y with respect to µ × ν. Then for almost all

x ∈ X , the x-section of φ, φ(x, ·), is integrable over Y with respect to ν and

∫

X×Y

φ d(µ × ν) =

∫

X

[
∫

Y

φ(x, y) dν(y)

]

dµ(x).

Note. We are now ready to prove Fubini’s Theorem.

Note. So Fubini’s Theorem allows us to calculate a double integral of an integrable

function using iterated integrals. As given, we first integrate with respect to ν and

then with respect to µ. The following result (really, the corollary to it) allows us to

perform the iterated integration in the opposite order (for nonnegative functions).
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Tonelli’s Theorem.

Let (X,A, µ) and (Y,B, ν) be two σ-finite measure spaces and ν be complete. Let

f be a nonnegative (µ × ν)-measurable function on X × Y . Then for almost all

x ∈ X , the x-section of function f , f(x, ·), is ν-measurable and the function defined

a.e. on X by

x 7→ (the integral of f(x, ·) over X with respect to ν)

is µ-measurable. Moreover,

∫

X×Y

f d(µ × ν) =

∫

X

[
∫

Y

f(x, y) dν(y)

]

dµ(x).

Note. Both Fubini and Tonelli are stated in terms of integration first with respect

to y and then with respect to x. Of course, this can be reversed in both results

provided we have the hypothesis that µ is complete.

Corollary 20.7. (Tonelli’s Corollary).

Let (X,A, µ) and (Y,B, ν) be two σ-finite, complete measure spaces and f a non-

negative (µ × ν)-measurable function of X × Y . Then:

(i) For almost all x ∈ X , the x-section of f , f(x, ·), is ν-measurable and the

function defined almost everywhere on X by

x 7→ (the integral of f(x, ·) over X with respect to ν)

is µ-measurable, and
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(ii) for almost all y ∈ Y , the y-section of f , f(·, y), is µ-measurable and the

function defined almost everywhere on Y by

y 7→ (the integral of f(·, y) over Y with respect to µ)

is µ-measurable.

Moreover, if
∫

X

[
∫

Y

f(x, y) dν(y)

]

dµ(x) < ∞,

then f is integrable over X × Y with respect to µ × ν and

∫

Y

[
∫

X

f(x, y) dµ(x)

]

dν(y) =

∫

X×Y

f d(µ × ν) =

∫

X

[
∫

Y

f(x, y) dν(y)

]

dµ(x).

Note. We now have three results concerning iterated integrals: (1) Fubini’s The-

orem, (2) Tonelli’s Theorem, and (3) Tonelli’s Corollary (Corollary 20.7). Here’s

how they compare:

(1) Fubini’s Theorem requires integrability of f over X × Y and completeness of

ν. Surprisingly, the iterated integral may be finite, but f not integrable over

X × Y (see Problem 20.6).

(2) Tonelli’s Theorem requires nonnegativity of f , the completeness of ν, AND

the σ-finiteness of both measure spaces. This result does not hold if we omit

either the nonnegativity or the σ-finiteness (see Problem 20.5).

(3) Tonelli’s Corollary requires nonnegativity of f , the completeness of both µ and

ν, and the σ-finiteness of both measure spaces. These hypotheses guarantee
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the measurability of the x-sections and y-sections of f . In addition (“More-

over”), the hypothesis of finiteness of one of the iterated integrals (either one,

actually) insures the integrability of f over X × Y and that the integral of f

can be calculated using either iterated integral.

Revised: 3/29/2017


