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Note. In this section, we extend Lebesgue measure to Rn using the Carathéodory-

Hahn Theorem. The Lebesgue integral of real valued functions on subsets of Rn will

then follow by the techniques of Chapter 18 (“Integration Over General Measure

Spaces”).

Note. Recall that Rn{(x1, x2, . . . , xn) | xi ∈ Rn for 1 ≤ i ≤ n}, Rn is a linear space

with bilinear form 〈·, ·〉 : Rn × Rn → R defined as 〈x, y〉 =
∑n

k=1
xkyk (the usual

inner product on Rn, and the induced norm ‖x‖ =
√

〈x, x〉 =
{
∑n

k=1
x2

k

}1/2
.

Note. Royden and Fitzpatrick deviate from tradition and consider [a, b], [a, b),

(a, b], and (a, b) for a ≤ b as “bounded intervals.” Notice that this implies that

singletons are then intervals. We have the length of such bounded inverval I as

`(I) = b− a.

Definition. A bounded interval in Rn is a set I that is the Cartesian product of

n bounded intervals of real numbers, I = I1 × I2 × · · · × In. The volume of I is

vol(I) = `(I1)`(I2) · · · `(In).

Note. The following is introduced to set up a situation where we can deal with

volumes of bounded intervals in Rn in a way that does not (directly) reference the

endpoints of the constituent intervals Ik (1 ≤ k ≤ n).
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Definition. A point in Rn is an integral point if each of its coordinates is an

integer. For bounded interval I in Rn, the integral count, µintegral(I), is the number

of integral points in I .

Lemma 20.8. For each ε > 0, the ε-dilation Tε : Rn → Rn is Tε(x) = εn. Then

for each bounded interval I in Rn,

lim
ε→0

µintegral(Tε(I))

εn
= vol(I).

Note. In Exercise 20.25 it is to be shown that the Cartesian product of two

semirings is a semiring and then that the following holds by induction.

Proposition 20.9. The collection I of bounded intervals in Rn is a semiring.

Note. We now show that the volume of an interval I in Rn is a premeasure. Then

we can use the results of Section 17.5, “The Carathéodory-Hahn Theorem: The

Extension of a Premeasure to a Measure,” to define an outer measure and measure

on Rn.

Proposition 20.10. The set function volume, vol : I → [0,∞), is a premeasure

on the semiring I of bounded intervals in Rn.
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Note. Recall from Theorem 17.9 that the outer measure induced by set function

µ defined on collection of sets S is defined as µ∗(E) = inf
∑∞

k=1
µ(Ek) where the

infimum is taken over all countable collections {Ek}
∞
k=1

of sets in S that cover E.

This allows us to use the premeasure vol to define an outer measure on Rn.

Definition. The outer measure µ∗n induced by premeasure vol on the semiring of

bounded intervals in Rn is the Lebesgue outer measure on Rn. The collection of

µ∗n-measurable sets (in the sense of Carathéodory, as defined in Section 17.3, “The

Carathéodory Measure Induced by an Outer Measure”) is denoted Ln and called

the Lebesgue measurable sets in Rn. The restriction of µ∗n to Ln is Lebesgue measure

on Rn (or “n-dimensional Lebesgue measure”) and denoted by µn.

Note. We now confirm that Ln is a σ-algebra and that for a bounded interval I

in Rn, µn(I) = vol(I) (analogous to the fact that for an interval in R, its Lebesgue

measure is its length).

Theorem 20.11. The σ-algebra Ln of Lebesgue measurable subsets of Rn contains

the bounded intervals in Rn and contains the Borel subsets in Rn. Moreover, the

measure space (Rn,Ln, µn) is both σ-finite and complete. For bounded interval I

in Rn, µn(I) = vol(I).

Corollary 20.12. Let E be a Lebesgue measurable subset of Rn and f : E → R be

continuous. Then f is measurable with respect to n-dimensional Lebesgue measure.
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Note. The next result shows that Lebesgue measure for measurable sets is the same

as outer measure (defined using open sets) and inner measure (defined using com-

pact sets); see my online handout on “An Alternate Approach to the Measure of a

Set of Real Numbers” at: http://faculty.etsu.edu/gardnerr/talks/Measure-

Theory.pdf.

Theorem 20.13. Let B be a Lebesgue measurable subset of Rn. Then

µ(E) = inf{µn(O) | E ⊂ O,O is open}

and

µ(E) = sup{µn(K) | K ⊂ E,K is compact}.

Note. Recall that in Theorem 2.11 it was shown that the measurability of E is

equivalent to the existence of Gδ set G with E ⊂ G and m∗(G \ E) = 0 (G is the

outer approximation of E with a Gδ set) and equivalent to the existence of Fσ set

F with F ⊂ E and m∗(E \ F ) = 0 F is the inner approximation of E with an

Fσ set). A similar result for a Carathédory measure is given in Proportion 17.10.

Since Ln contains the Borel sets by Theorem 20.11, then Ln contains the Gδ and

Fσ sets. So, as a corollary to Theorem 20.13 we have the following result analogous

to Theorem 2.11.
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Corollary 20.14. For a subset E of Rn, the following assertions are equivalent:

(i) E is measurable with respect to n-dimensional Lebesgue measure.

(ii) There is a Gδ subset G of Rn such that E ⊂ G and µ∗n(G \ E) = 0.

(iii) There is a Fσ subset F of Rn such that F ⊂ E and µ∗n(E \ F ) = 0.

Note/Definition. In Problem 20.20, it is to be shown that Lebesgue measure is

translation invariant in the following sense. For E ⊂ Rn and z ∈ Rn, define the

translation E + Z = {x + z | z ∈ E}. Then µn is translation invariant if for E

µn-measurable we have E + z is µn-measurable and µn(E) = µn(E + z).

Note. In the previous section, we took measure spaces (X,A, µ) and (Y,B, η)

and defined a premeasure on the measurable rectangles in X × Y as λ(A × B) =

µ(A) ·η(B). The product measure was then defined as the Carathéodory extension

of λ. We now show that Lebesgue measure on Rn can be expressed as a product

of two measures, one on Rm and the other on Rk where n = m + k.

Definition. Consider the sets Rn, Rm, Rk, and Rm × Rk where n,m, k ∈ Q and

n = m+ k. Define the mapping ϕ : Rn → Rm × Rk as

ϕ((x1, x2, . . . , xn)) = ((x1, x2, . . . , xm), (xm+1, xm+2, . . . , xm+k)) ∈ Rm × Rk (20)

for (x1, x2, . . . , xn) ∈ Rn.
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Note. Mapping ϕ is one to one and onto. Each of Rn, Rm, and Rk has a linear

structure (as a vector space), a topological structure, and a measure structure

(the Lebesgue measures µn, µm, and µk, respectively). The product space Rm×Rk

inherits a linear structure, a topological structure (using the product topology), and

a measure structure from its component spaces Rm and Rk. The mapping ϕ is an

isomorphism with respect to the linear structure and the topological structure (since

the projection mappings are continuous under the product topology by Proposition

12.4). The next result shows that ϕ is also an isomorphism from measure space

(Rn,Ln, µn) to (Rm × Rk,L, µm × µn).

Proposition 20.15. For the mapping ϕ : Rn → Rm×Rk defined by (20), a subset

E of Rn is measurable with respect to n-dimensional Lebesgue measure µn if and

only if its image ϕ(E) is measurable with respect to the product measure µm × µk

on Rm × Rk and µn(E) = (µm × µk)(ϕ(E)).

Note. Proposition 20.15, combined with the Theorems of Fubini and Tonelli, allow

us to easily prove the following (as is asked in Exercise 20.2.E).
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Theorem 20.16. For n,m, k ∈ N such that n = m + k, consider the mapping

ϕ : Rn → Rm×Rk defined by (20). A function f : Rm×Rk → R is measurable with

respect to the product measure µm×µk if and only if the composition f ◦ϕ : Rn → R

is measurable with respect to Lebesgue measure µn. If f is integrable over Rn with

respect to Lebesgue measure µn then

∫

Rn

f dµn =

∫

Rk

(
∫

Rm

f(x, y) dµm(x)

)

dµk(y).

Moreover, if f is nonnegative and measurable with respect to Lebesgue measure

µn, this equality also holds.

Note. Let L(Rn) be the linear space of linear operators T : Rn → Rn. Denote by

GL(n,R) the subset of L(Rn) of one to one and onto (and hence invertible) opera-

tors. Under the binary operation of composition, GL(n,R) is a group, the general

linear group. In fact, GL(n,R) is isomorphic to the group of all invertible n × n

matrices with real entries. See my online notes for Introduction to Modern Algebra

(MATH 4127/5127), Section I.4, “Groups”: http://faculty.etsu.edu/gardnerr/

4127/notes/I-4.pdf.

Note. Recall that f : X → Y , where (X, ρ) and (Y, σ) are metric spaces, is

Lipschitz if there is c ≥ 0 such that for all u, v ∈ X we have σ(f(u), f(v)) ≤ cρ(u, v)

(see Section 9.3). A Lipschitz function on X is uniformly continuous on X (let

δ = ε/c).

Proposition 20.17. A linear operator T : Rn → Rn is Lipschitz.
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Note. In Proposition 2.20(ii), it is shown that there is a continuous function ψ

(related tot the Cantor-Lebesgue function ϕ(x) as ψ(x) = ϕ(x) + x) which maps a

measurable set of real numbers onto a set of nonmeasurable set of real numbers. So

continuous functions do not preserve the property of measurability. In Exercise 2.38

it is to be shown that a Lipschitz function maps measurable sets of real numbers to

measurable sets of real numbers. The second result also holds for Lipschitz linear

mappings.

Proposition 20.18. Let the mapping Ψ : Rn → Rn be Lipschitz. If E is a

Lebesgue measurable subset in Rn, so is Ψ(E). In particular, a linear operator

T : Rn → Rn maps Lebesgue measurable sets to Lebesgue measurable sets.

Note. It shouldn’t be surprising that Proposition 20.18 implies that the composi-

tion of a linear operator with a measurable function is a measurable function, as

now given.

Corollary 20.19. Let the function f : Rn → R be measurable with respect to

Lebesgue measure and let the operator T : Rn → Rn be linear and invertible.

Then the composition f ◦ T : Rn → R is also measurable with respect to Lebesgue

measure.
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Note. You may have seen in sophomore Linear Algebra (MATH 2010) that if

B is an n-box in Rn of volume V and A : Rn → Rn is a linear transformation

(so A is an n × n matrix) then the volume of the image of B under transforma-

tion A, AB, is |det(A)|V . Since integrals (and volumes) in Rn are defined, as

here, in terms of n-boxes (or “intervals” here) then the volume V of any mea-

surable region in Rn maps to a region of volume |det(A)|V under linear transfor-

mation A. The factor |det(A)| is the volume-change factor of linear transforma-

tion A. See my online notes on “Linear Transformations and Determinants” at:

http://faculty.etsu.edu/gardnerr/2010/c4s4.pdf. We now show this idea

holds for Lebesgue integrals when n = 1 (in which case the linear transformation

maps x 7→ αx for some α ∈ R).

Proposition 20.20. Let f : R → R be integrable over R with respect to one-

dimensional Lebesgue measure µ1. If α, β ∈ R, α 6= 0, then

∫

R

f dµ1 = |α|

∫

R

f(αx) dµ1(x) and

∫

R

f dµ1 =

∫

R

f(x + β) dµ1(x).

Note. In the next result we consider linear transformations mapping R2 → R2.

We consider three particular transformations,

A1 =





0 1

1 0



 , A2 =





1 0

1 1



 , A3 =





c 0

0 1



 .

A1 corresponds to reflection about the line y = x in the xy-plane, A2 corresponds

to a (particular) vertical shear in the xy-plane, and A3 corresponds to horizontal
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expansion.contraction (for c > 0). With c = −1 in A3,





−1 0

0 1



 is a reflection

about the y-axis. With c = −1 in A3, we have A1A3A1 =





1 0

0 −1



 is a reflection

about the x-axis. Now A1A3A1 =





1 0

0 c



 is a vertical expansion/contraction (for

c > 0). Let A4 =





1/c 0

0 1



 (so that A4 is of the form of A3), then A4A2A3 =





1 0

c 1



 is a horizontal shear. Finally, A3A1A2A1A4 =





1 c

0 1



 which is a vertical

shear. Now every invertible linear transformation mapping R2 → R2 is a finite

sequence of

• reflections about the x-axis, y-axis, or the line y = x,

• vertical or horizontal expansions or contractions, and

• vertical or horizontal shears.

See Theorem 2.4.A in my online notes for “Geometric Description of Invertible

Transformations of R2,” at http://faculty.etsu.edu/gardnerr/2010/c2s4.pdf.

So by considering transformations of the forms A1, A2, and A3, we have through

compositions all invertible transformations of R2.
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Proposition 20.21. Let f : R2 → R be integrable over R2 with respect to

Lebesgue measure µ2 and let c 6= 0 be a real number. Define ϕ : R2 → R,

ψ : R2 → R, and η : R2 → R by ϕ(x, y) = f(y, x), ψ(x, y) = f(x, x + y), and

η(x, y) = f(cx, y) for all (x, y) ∈ R2. Then ϕ, ψ, and η are integrable over R2 with

respect to Lebesgue measure µ2. Moreover,
∫

R2

f dµ2 =

∫

R2

ϕdµ2 =

∫

R2

ψ dµ2 and

∫

R2

f dµ2 = |c|

∫

R2

η dµ2.

Note. We now five a proof of Proposition 20.21 for ϕ and leave the proofs for ψ

and η as Exercise 20.2.F.

Note. We need a couple of results from matrix theory. We know that every element

of GL(n,R) can be represented by an n×n invertible matrix. Such a matrix is row

equivalent to the n × n identity matrix I (see Theorem 1.12 of my online Linear

Algebra notes at http://faculty.etsu.edu/gardnerr/2010/c1s5.pdf. Recall

that the elementary row operations on a matrix are:

(1) multiplying the jth row by a nonzero scalar c,

(2) interchanging two rows,

(3) adding a multiple of one row to another.

Royden and Fitzpatrick use this to motivate consideration of three types of ele-

mentary linear operators. They describe them as they affect the standard basis

vectors e1, e2, . . . , en (which we might view as how the transformation affects the

rows of an n× n identity matrix:
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Type 1. T (ej) = cej and T (ek) = ek for k 6= j;

Type 2. T (ej) = ej+1, T (ej+1) = ej, and T (ek) = ek for k 6∈ {j, j + 1};

Type 3. T (ej) = ej + ej+1 and T (ek) = ek for k 6= j.

The Type 2 linear operators interchange consecutive basis vector, but with a se-

quence of these operators any two basis vectors can be interchanged. Type 3 linear

operators add one basis element to another (name, maps ej to ej + ej+1), and this

combined with a Type 1 linear operator and a sequence of Type 2 linear operators

allow us to add a multiple of any basis vector to any other. So all elementary row

operations are produced from this list of three “very elementary” linear operators.

Note. The other idea we need from matrix theory is the idea of a determinant

of a matrix (or for a “linear transformation” here). We denote the determinant of

linear transformation T as det(T ) and Royden and Fitzpatrick note that det(T )

satisfies:

(i) For any two linear operators T, S : Rn → Rn we have det(S◦T ) = det(S)det(T );

(ii) If T is Type 1 then det(T ) = c, if T is Type 2 then det(T ) = −1, and if T is

Type 3 then det(T ) = det(I) = 1;

(iii) If T (en) = en and T maps the subspace {x ∈ Rn | x = (x1, x2, . . . , xn−1, 0)}

into itself then det(T ) = det(T ′) where T ′ : Rn−1 → Rn−1 is the restriction of

T to Rn−1.

These properties are seen in Linear Algebra (MATH 2010). See my online notes on

“The Determinant of a Square Matrix” at http://faculty.etsu.edu/gardnerr/
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2010/c4s2.pdf. Property (i) is Theorem 4.4 (“The Multiplicative Property”) in

the Linear Algebra notes, Properties (ii) are implied by Theorem 4.2.A (“Properties

of the Determinant”) in the Linear Algebra notes, and Property (iii) is implied by

the recursive definition of determinant (see Definition 4.1b in the Linear Algebra

notes).

Note. In Proposition 20.20, we considered (f ◦ T )(x) = f(αx) so that we had the

linear transformation T (x) = αx which can be viewed as action by a 1 × 1 matrix

[α] which has determinant α, det(T ) = α. In Proposition 20.21, we considered

η(x, y) = f(cx, y) which we can view as (f ◦ T )(x, y) where T : R2 → Rn is

represented by the matrix =





c 0

0 1



 and so det(T ) = c. So in Propositions 20.20

and 20.21, we see that integrals of compositions of f with a linear transformation

mapping Rn → Rn (where n ∈ {1, 2}) are related to the original integral of f by a

factor of |det(T )|. The next result shows that this holds for all n ∈ N.

Proposition 20.22. Let the linear operator T : Rn → Rn be invertible and the

function f : Rn → R be integrable over Rn with respect to Lebesgue measure µn.

Then the composition f ◦ T : Rn → R is also integrable over Rn with respect to

Lebesgue measure µn and

∫

Rn

f dµn = |det(T )|

∫

Rn

f ◦ T dµn or

∫

Rn

f ◦ T dµn =
1

|det(T )|

∫

Rn

f dµn.
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Note. You may have seen a generalization of this in Calculus 2 (MATH 2110)

when using substitution in multiple integrals. Recall that in a double integral

(under certain hypotheses) if we make a substitution x = g(u, v) and y = h(u, v)

then
∫ ∫

R

f(x, y) dx dy =

∫ ∫

G

f(g(u, v), h(u, v))|J(u, v)| du dv

where G is the image of R under the substitution mapping and

J(u, v) =

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∣

=
∂x

∂u

∂y

∂v
−
∂x

∂v

∂y

∂u

is the Jacobian determinant (or simply “Jacobian”) of the substitution. Notice that

if the substitution is linear (that is, g and h are linear functions of u an dv) then

the Jacobian is just the determinant of a 2 × 2 matrix of constants and this result

reduces to Theorem 20.11. My online Calculus 3 notes also state a similar result for

f(x, y, z); see “Substitutions in Multiple Integrals” at http://faculty.etsu.edu/

gardnerr/2110/notes-12e/c15s8.pdf. This can be extended to functions of n-

variables.

Note. The next result shows that invertible linear operators preserve measurable

sets and affect Lebesgue measure in a predictable way.

Corollary 20.23. Let the linear operator T : Rn → Rn be invertible. Then

for each Lebesgue measurable subset E of Rn, T (E) is Lebesgue measurable and

µn(T (E)) = |det(T )|µn(E).
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Definition. A rigid motion of Rn is a mapping ψ of Rn → Rn that preserves

Euclidean distances between points; that is

‖ψ(u) − ψ(v)‖ = ‖u− v‖ for all u, v ∈ Rn.

Note. In the setting of metric spaces, a rigid motion is called an “isometry” (see

Section 9.1, “Examples of Metric Spaces”). Royden and Fitzpatrick use a theorem

of Mazur and Ulam (see page 434) to argue that rigid motions preserve Lebesgue

measure, as follows.

Corollary 20.24. Let ψ : Rn → Rn be a rigid motion. Then for each Lebesgue

measurable subset E of Rn, µn(ψ(E)) = µn(E).

Note. If a linear operator T : Rn → Rn fails to be invertible then its range is some

subspace of Rn of dimension less than n (the rank of the matrix associated with T

must be less than n [see Theorem 2.6 of my notes on “The Rank of a Matrix” at

http://faculty.etsu.edu/gardnerr/2010/c2s2.pdf] and the range of T is the

column space of the associated matrix). So the µn measure of T (E) for some mea-

surable E ⊂ Rm is then 0. Also, det(T ) = 0 in this case so Corollary 20.23 in fact

holds for noninvertible linear operators also. Here, Royden and Fitzpatrick are only

addressing the µn-measure of subsets of Rn. If a set E lies in some subspace of Rn of

dimension m, then we could address the µm-measure of set E. Fraleigh and Beaure-

gard in Linear Algebra, 3rd Edition (Addison-Wesley, 1995) give a fairly nice version

of discussing this in terms of n-boxes and m-boxes and transformations mapping

Rn → Rm is their Section 4.4, “Linear Transformations and Determinants.” So

also my online notes at http://faculty.etsu.edu/gardnerr/2010/c4s4.pdf.
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