Section 20.3. Cumulative Distribution Functions and Borel Measures on \mathbb{R}

Note. In this section, we return to a study of intervals and Borel subsets of an interval. We define a Borel measure and a cumulative distribution function of a Borel measure. We relate the two using an increasing "continuous on the right" function. We also introduce the Lebesgue-Stieltjes integral.

Recall. The Borel sets on \mathbb{R} are the smallest σ -algebra containing the open sets. A function g defined on interval [c, d) is continuous on the right if $\lim_{x \to c^+} g(x) = g(c)$.

Definition. Let I = [a, b] be a closed, bounded interval of real numbers and $\mathcal{B}(I)$ the collection of Borel subsets of I. A finite measure μ on $\mathcal{B}(I)$ is a *Borel measure*. For such a measure, define the function $g_{\mu} : I \to \mathbb{R}$ by $g_{\mu}(x) = \mu([a, x])$ for all $x \in I$. The function g_{μ} is the *cumulative distribution function* of μ .

Note. The following result relates cumulative distribution functions and increasing functions continuous from the right.

Proposition 20.25. Let μ be a Borel measure on $\mathcal{B}(I)$. Then its cumulative distribution function g_{μ} is increasing and continuous on the right. Conversely, each function $g : I \to \mathbb{R}$ is increasing and continuous on the right is the cumulative distribution function of a unique Borel measure μ_g on $\mathcal{B}(I)$.

Recall. A measure ν on measurable space (X, \mathcal{M}) is absolutely continuous with respect to measure μ on (X, \mathcal{M}) , denoted $\nu \ll \mu$, if $E \in \mathcal{M}$ and $\mu(E) = 0$ implies $\nu(E) = 0$. A real valued function f on [a, b] is absolutely continuous on [a, b] if for each $\epsilon > 0$, there is a $\delta > 0$ such that for every finite disjoint collection $\{(a_k, b_k)\}_{k=1}^n$ of open intervals in (a, b),

if
$$\sum_{k=1}^{n} [b_k - a_k] < \delta$$
 then $\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon$

The following result relates the continuity of a Borel measure to the continuity of its cumulative distribution function. It's proof is to be given in Exercise 20.35

Proposition 20.26. Let μ be a Borel measure on $\mathcal{B}(I)$ and g_{μ} its cumulative distribution function. Then the measure μ is absolutely continuous with respect to Lebesgue measure if and only if the function g_{μ} is absolutely continuous.

Note. We now define the Lebesgue-Stieltjes integral and recall the definition of the Riemann-Stieltjes integral from senior level analysis.

Definition. Let I = [a, b] and $g : I \to \mathbb{R}$ be increasing and continuous on the right. Let $f : I \to \mathbb{R}$ be bounded and Borel measurable. The *Lebesgue-Stieltjes integral* of f with respect to g over [a, b] is the integral of f over [a, b] with respect to the Borel measure μ_g , denoted $\int_a^b f \, dg$. That is,

$$\int_{z}^{b} f \, dg = \int_{[a,b]} f \, d\mu_g.$$

Note. We now relate Lebesgue-Stieltjes integrals to regular Lebesgue integrals.

Lemma 20.A. If a Borel measure μ is absolutely continuous with respect to Lebesgue measure m, then the Radon-Nikodym derivative of μ with respect to m is the derivative of the cumulative distribution function of μ :

$$\frac{d\mu}{dm} = \frac{d}{dx}[g_{\mu}(x)] = \frac{d}{dx}[\mu([a,x]).$$

Proof. Exercise 20.44.

Theorem 20.A. Suppose f is a bounded Borel measurable function on [a, b] and g is increasing and absolutely continuous on [a, b]. Then for Lebesgue measure m, we have

$$\int_{[a,b]} f \, dg = \int_{[a,b]} fg' \, dm$$

Proof. Exercise 20.36.

Corollary 20.A. Suppose f is a bounded Borel measurable function on [a, b]. Let μ be the Borel measure on [a, b], g_{μ} the cumulative distribution of μ_g , and mLebesgue measure. Then

$$\int_{[a,b]} f \, dg_{\mu} = \int_{[a,b]} f \, \frac{d\mu}{dm} dm$$

where $d\mu/dm$ is the Radon-Nikodym derivative of μ with respect to m.

Proof. By Proposition 20.26, μ_g is absolutely continuous with respect to m. By Lemma, $g'_{\mu} = \frac{d\mu}{dm}$. The claim follows from Theorem.

Note. Let's recall the definition of the Riemann-Stieltjes integral of f on [a, b] with respect to g.

Definition. Let $P = \{a_0, a_1, \ldots, x_n\}$ be a partition of [a, b] where $a = x_0 < x_1 < \cdots < x_n = b$. Let $\Delta x_i = x_i - x_{i-1}$ and $||P|| = \max\{\Delta x_i\}$. Let $C = \{c_1, c_2, \ldots, c_n\}$ such that $c_i \in [x_{i-1}, x_i]$. For bounded functions $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$, define the *Riemann-Stieltjes sum*

$$S(f, g, P, C) = \sum_{k=1}^{n} f(c_i)(g(x_i) - g(x_{i-1})).$$

If there is $A \in \mathbb{R}$ such that for each $\epsilon > 0$ there exists $\delta > 0$ where

$$||P|| < \delta \Rightarrow |S(f, g, P, C) - A| < \epsilon$$

then f is Riemann-Stieltjes integrable over [a, b] with respect to g and the Riemann-Stieltjes integral is

$$A = \int_{a}^{b} f(x) \, dg(x)$$

Note. If g(x) = x then $g(x_i) - g(x_{i-1}) = \Delta x_i$ and Riemann-Stieltjes integration reduces to regular Riemann integration. if g' exists on [a, b], then

$$\int_a^b f(x) \, dg(x) = \int_z^b f(x) g'(x) \, dx,$$

as is shown in senior level analysis.

Note. The following is a relationship between Riemann-Stieltjes integration and Lebesgue-Stieltjes integration.

Theorem 20.B. Suppose f is continuous on [a, b] and g is increasing and absolutely continuous on [a, b]. If m is Lebesgue measure, then

$$\int_{a}^{b} f(x) dg(x) = \int_{[a,b]} fg' dm.$$

Proof. Exercise 20.37.

Revised: 2/27/2019