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Section 20.4. Carathédory Outer Measures and Hausdorft

Measures on a Metric Space

Note. Lebesgue outer measure on Euclidean space R™ has the property that if A
and B are subsets of R" and there is § > 0 for which ||u —v|| > ¢ for all u € A and
v € B, then outer measure p* satisfies p (AW B) = i (A) + s (B). A proof of this
result is not in Royden and Fitzpatrick, except that in the case n = 1 it appears
as Exercise 2.10. In this section, we consider measures induced by outer measures

on a metric space that possesses this additivity property.

Definition. Two subsets of set X are separated by real-valued function f on X
provided there are real numbers a and b with a < band f <aon A and f > b on
B.

Note. We now show that if when ¢ separates sets, it implies additivity of the

outer measure of those sets, then ¢ is measurable.

Proposition 20.27. Let ¢ be a real-valued function on a set X and p* : 2% —

[0, 00] an outer measure with the property that whenever two subsets A and B of

X are separated by ¢, then
W (AU B) = i (A) + 1 (B).

Then ¢ is measurable with respect to the measure induced by p*.
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Note. In a metric space (X, p), the distance between sets A and B is defined as
p(A, B) = inf,capepp(u,v) (see Exercise 9.72). The Borel o-algebra associated
with this metric space, denoted B(X), is the smallest o-algebra containing the

topology (that is, all open sets under the metric topology).

Definition. Let (X, p) be a metric space. An outer measure u* : 2% — [0, 00] is a
Carathéodory outer measure if for all subsets A and B of X with p(A, B) > 0, we
have

p(AYB) = p(A) + 17 (B).

Note. We first give a property of a Carathéodory out measure on a metric space
and then give an example of a Carathéodory outer measure on any given metric

space.

Theorem 20.28. Let p* be a Carathéodory outer measure on matrix space (X, p).

Then every Borel subset of X is measurable with respect to p*.

Note. In a metric space (X, p), set A C X has diameter diam(A) = sup,, ,c p(u,v)
(see Section 9.4).
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Definition. Fix oo > 0. Take ¢ > 0 and for £ C X define
H® = inf Z(diam(Ak))O‘,
k=1
where {A;}72 is a countable collection of subsets of X that covers F and each Ay
has a diameter less than €. Define

H!(E) =sup H9(E) = lim HO(E).

e>0 e—0

Note. Royden and Fitzpatrick claim that H (E) increases as € decreases; thus the
expression of H(F) as a limit is justified. We now show that H} is a Carathéodory

out measure on any given metric space (X, p).

Proposition 20.29. Let (X, p) be a metric space and « a positive real number.

Then H! : 2%X — [0, 00] is a Carathéodory outer measure.

Note. Since H} is a Carathéodory outer measure then, by Theorem 20.28, it

induces a measure on the g-algebra of Borel sets of X on metric space (X, p).

Definition. Let (X, p) be a metric space. The measure H, on the o-algebra of

Borel sets on X, B(X), is the Hausdorff a-dimensional measure on X.

Proposition 20.30. Let (X, p) be a metric space. Let A be a Borel subset of
X, and let «, 8 be positive real numbers for which @ < 3. If H,(A) < oo then
Hz(A) = 0.
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Theorem 20.4.A. The Hausdorff 1-dimensional measure, Hp, is the same as

Lebesgue measure on the g-algebra of Lebesgue measurable sets of real numbers.

Note. We might expect Theorem 20.4.A to hold for Hausdorff n-dimensional
measure and Lebesgue measure y, for all n € N (that is, we might expect that
H,, = p, on R"). However, this is not the case for n > 1. In Exercise 20.48 it is to
be shown that for any bounded set in R? that Hy(A) > %,ug(A) > us(A). However,
Exercise 20.55 shows that H,, = i, on R" for a constant v, (in fact, v, = H,(J)

where J is a unit cube in R").

Definition. For E C R", the Hausdorff dimension of E is

dimg(E) = inf{3 > 0 | Hs(E) = 0}.

Note. Let £ C R" have positive Lebesgue measure, u,(E) (that is, 0 < p,(F) <
o0). Then by Exercise 20.55, oo > H,(E) = Y,un(E) > 0 and so by Proposition
20.30, the Hausdorff dimension is dimy(E) = inf{8 > 0 | Hg(E) = 0} = n.

Note. Royden and Fitzpatrick state (page 444): “There are many specific calcu-
lations of Hausdorff dimension of subsets of Euclidean space. For instance, it can

be shown that the Hausdorff dimension of the Cantor set is log 2/ log 3.”
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