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Section 20.4. Carathédory Outer Measures and Hausdorff

Measures on a Metric Space

Note. Lebesgue outer measure on Euclidean space R
n has the property that if A

and B are subsets of R
n and there is δ > 0 for which ‖u− v‖ ≥ δ for all u ∈ A and

v ∈ B, then outer measure µ∗
n satisfies µ∗

n(A∪· B) = µ∗
n(A)+µ∗

n(B). A proof of this

result is not in Royden and Fitzpatrick, except that in the case n = 1 it appears

as Exercise 2.10. In this section, we consider measures induced by outer measures

on a metric space that possesses this additivity property.

Definition. Two subsets of set X are separated by real-valued function f on X

provided there are real numbers a and b with a < b and f ≤ a on A and f ≥ b on

B.

Note. We now show that if when ϕ separates sets, it implies additivity of the

outer measure of those sets, then ϕ is measurable.

Proposition 20.27. Let ϕ be a real-valued function on a set X and µ∗ : 2X →

[0,∞] an outer measure with the property that whenever two subsets A and B of

X are separated by ϕ, then

µ∗(A ∪· B) = µ∗(A) + µ∗(B).

Then ϕ is measurable with respect to the measure induced by µ∗.
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Note. In a metric space (X, ρ), the distance between sets A and B is defined as

ρ(A,B) = infu∈A,v∈B ρ(u, v) (see Exercise 9.72). The Borel σ-algebra associated

with this metric space, denoted B(X), is the smallest σ-algebra containing the

topology (that is, all open sets under the metric topology).

Definition. Let (X, ρ) be a metric space. An outer measure µ∗ : 2X → [0,∞] is a

Carathéodory outer measure if for all subsets A and B of X with ρ(A,B) > 0, we

have

µ∗(A ∪· B) = µ∗(A) + µ∗(B).

Note. We first give a property of a Carathéodory out measure on a metric space

and then give an example of a Carathéodory outer measure on any given metric

space.

Theorem 20.28. Let µ∗ be a Carathéodory outer measure on matrix space (X, ρ).

Then every Borel subset of X is measurable with respect to µ∗.

Note. In a metric space (X, ρ), set A ⊂ X has diameter diam(A) = supu,v∈A ρ(u, v)

(see Section 9.4).
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Definition. Fix α > 0. Take ε > 0 and for E ⊂ X define

H(ε)
α = inf

∞∑

k=1

(diam(Ak))
α,

where {Ak}
∞
k=1 is a countable collection of subsets of X that covers E and each Ak

has a diameter less than ε. Define

H∗
α(E) = sup

ε>0
H(ε)

α (E) = lim
ε→0

H(ε)
α (E).

Note. Royden and Fitzpatrick claim that H
(ε)
α (E) increases as ε decreases; thus the

expression of H∗
α(E) as a limit is justified. We now show that H∗

α is a Carathéodory

out measure on any given metric space (X, ρ).

Proposition 20.29. Let (X, ρ) be a metric space and α a positive real number.

Then H∗
α : 2X → [0,∞] is a Carathéodory outer measure.

Note. Since H∗
α is a Carathéodory outer measure then, by Theorem 20.28, it

induces a measure on the σ-algebra of Borel sets of X on metric space (X, ρ).

Definition. Let (X, ρ) be a metric space. The measure Hα on the σ-algebra of

Borel sets on X , B(X), is the Hausdorff α-dimensional measure on X .

Proposition 20.30. Let (X, ρ) be a metric space. Let A be a Borel subset of

X , and let α, β be positive real numbers for which α < β. If Hα(A) < ∞ then

Hβ(A) = 0.
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Theorem 20.4.A. The Hausdorff 1-dimensional measure, H1, is the same as

Lebesgue measure on the σ-algebra of Lebesgue measurable sets of real numbers.

Note. We might expect Theorem 20.4.A to hold for Hausdorff n-dimensional

measure and Lebesgue measure µn for all n ∈ N (that is, we might expect that

Hn = µn on R
n). However, this is not the case for n > 1. In Exercise 20.48 it is to

be shown that for any bounded set in R
2 that H2(A) ≥

4

π
µ2(A) > µ2(A). However,

Exercise 20.55 shows that Hn = γnµn on R
n for a constant γn (in fact, γn = Hn(J)

where J is a unit cube in R
n).

Definition. For E ⊂ R
n, the Hausdorff dimension of E is

dimH(E) = inf{β ≥ 0 | Hβ(E) = 0}.

Note. Let E ⊂ R
n have positive Lebesgue measure, µn(E) (that is, 0 < µn(E) <

∞). Then by Exercise 20.55, ∞ > Hn(E) = γnµn(E) > 0 and so by Proposition

20.30, the Hausdorff dimension is dimH(E) = inf{β ≥ 0 | Hβ(E) = 0} = n.

Note. Royden and Fitzpatrick state (page 444): “There are many specific calcu-

lations of Hausdorff dimension of subsets of Euclidean space. For instance, it can

be shown that the Hausdorff dimension of the Cantor set is log 2/ log 3.”

Revised: 12/21/2018


