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Section 4.2. Lebesgue Integration of a Bounded

Measurable Function over a Set of Finite Measure

Note. In Sections 4.2 through 4.4, we develop Lebesgue integration of measurable

functions. We do so by defining the Lebesgue integral for a class of functions

and then use that class of functions to define the Lebesgue integral for the next

(larger) class of functions. In this section, we start with the class of simple functions

(think of this as “Class 0”). We then use integrals of simple functions to define the

Lebesgue integral of bounded measurable functions over sets of finite measure (think

of this as “Class 1”). In Class 1, we have that everything with which we compute is

bounded (namely, function values are bounded and measures of sets are bounded).

In Section 4.3 we consider nonnegative functions (functions in “Class 2”). We define

the Lebesgue integral of Class 2 functions in terms of integrals of Class 1 functions.

In Class 2, we may encounter unbounded integrals (i.e., integrals which are infinite),

but we will not encounter any sort of ∞−∞ situation since nothing is negative

here. In Section 4.4 we consider integrable functions (that is, functions that have a

positive part and a negative part, both of which are nonnegative by definition, and

both of which have a finite Lebesgue integral); these are the functions in “Class 3.”

The positive and negative parts of these functions are in Class 2 and have finite

integrals. We then define the integral of a Class 3 function as the integral of the

positive part minus the integral of the negative part (since both of these integrals

in finite, we have avoided an ∞−∞ situation).
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Note. In Section 4.1 we saw that we could define the Riemann integral of a

bounded function on a closed and bounded interval in terms of lower and upper

Riemann integrals:

(R)

∫ b

a

f = sup

{
(R)

∫ b

a

ϕ | ϕ is a step function and ϕ ≤ f on [a, b]

}
and

(R)

∫ b

a

f = inf

{
(R)

∫ b

a

ϕ | ϕ is a step function and ϕ ≥ f on [a, b]

}
,

respectively. When the upper and lower Riemann integrals are equal, the Riemann

integral is the common value of these two integrals. We now follow a similar pro-

cedure in the development of the Lebesgue integral by replacing the step functions

of Riemann with simple function here. Therefore, simple functions play the same

role in Lebesgue integration as step functions play in Riemann integration.

Definition. For simple function ψ on a set of finite measure E with canonical

representation ψ =
∑n

i=1 aiχEi
, define the (Lebesgue) integral∫

E

ψ =
n∑

i=1

aim(Ei).

Note. We have defined the Lebesgue integral in terms of the canonical represen-

tation. In the next result we give the value of the Lebesgue integral of simple ϕ in

the event that the representation of ϕ may not be the canonical one.
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Lemma 4.1. Let {Ei}n
i=1 be a finite disjoint collection of measurable subsets of a

set of finite measure E. For 1 ≤ i ≤ n, let ai be a real number. If ϕ =
∑n

i=1 aiχEi

on E then
∫

E ϕ =
∑n

i=1 aim(Ei).

Note. The following is the first time (of four times; once for each “Class” of

functions) we’ll see a linearity and monotonicity result.

Proposition 4.2. Linearity and Monotonicity of Integration.

Let ϕ and ψ be simple functions defined on a set of finite measure E. Then for any

α, β ∫
E

(αϕ+ βψ) = α

∫
E

ϕ+ β

∫
E

ψ

and if ϕ ≤ ψ on E then
∫

E ϕ ≤
∫

E ψ.

Note. We are ready to define the lower and upper Lebesgue integrals for Class

1 functions. Notice that the definition is very similar to the definition of the

lower and upper Riemann integral of a bounded function on a closed and bounded

interval, but that simple functions are used here whereas step functions were used

for Riemann integrals.

Definition. Let f be a bounded function on a set of finite measure. Define the

lower Lebesgue integral∫
E

f = sup

{∫
E

ϕ

∣∣∣∣ϕ is simple, ϕ ≤ f

}
.
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Define the upper Lebesgue integral∫
E

f = inf

{∫
E

ψ

∣∣∣∣ψ is simple, ψ ≥ f

}
.

Note. By monotonicity, since f is bounded, both
∫

Ef and
∫

Ef are finite. Also by

monotonicity
∫

Ef ≤
∫

Ef.

Definition. A bounded function f on a domain E of finite measure is said to be

Lebesgue integrable over E provided
∫

Ef =
∫

Ef. The common value is the Lebesgue

integral of f over E, denoted
∫

E f .

Note. We’ll see below that all Class 1 functions are Lebesgue integrable (see

Theorem 4.4).

Note. Recall from the Riemann-Lebesgue Theorem (Theorem 6-11 in the Riemann-

Lebesgue Theorem supplement) that a bounded function on [a, b] is Riemann in-

tegrable if and only if f is continuous almost everywhere. By Proposition 3.3 a

real-valued function that is continuous on its measurable domain is a measurable

function, and by Proposition 3.5(i) if f is measurable on E and f = g a.e. on

E then g is measurable on E. So a bounded function that is continuous a.e. on

[a, b] is measurable and so both the Riemann integral and the Lebesgue integral

are defined for such a function. We now show that these integrals have the same

values, as expected.

https://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem.pdf
https://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem.pdf
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Theorem 4.3. Let f be a bounded function defined on [a, b]. If f is Riemann

integrable over [a, b] then it is Lebesgue integrable over [a, b] and the two integrals

are equal.

Note. The following result establishes the Lebesgue integrability of the class of

functions studied in this section (the “Class 1” functions).

Theorem 4.4. Let f be a bounded measurable function on a set of finite measure

E. Then f is integrable on E.

Note. The converse of Theorem 4.4 is also true. That is, if bounded f on set of

finite measure E is integrable (i.e.,
∫

E f exists), then f is measurable (see Theorem

5.7 in 5.3. Characterization of Riemann and Lebesgue Integrability).

Note. We now have our second encounter with a linearity and monotonicity result.

Proposition 4.2 addressed linearity and monotonicity for simple functions (i.e.,

Class 0 functions) and the next result addresses bounded functions on sets of finite

measure (i.e., Class 1 functions).

https://faculty.etsu.edu/gardnerr/5210/notes/5-3.pdf
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Theorem 4.5. Linearity and Monotonicity.

Let f and g be bounded measurable functions on a set of finite measure E. Then

for all α, β ∈ R ∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g.

Moreover, if f ≤ g on E, then
∫

E f ≤
∫

E g.

Note. Linearity and and monotonicity on Class 1 can be used to prove the following

two corollaries.

Corollary 4.6. Let f be a bounded measurable function on a set E of finite

measure. Suppose A and B are measurable disjoint subsets of E. Then∫
A∪·B

f =

∫
A

f +

∫
B

f.

Corollary 4.7. Let f be a bounded measurable function on a set of finite measure

E. Then ∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f |.

Note. Recall that a sequence {fn} of Riemann integrable functions on [a, b] which

converges uniformly to f on [a, b] satisfies

lim
n→∞

(
(R)

∫ b

a

fn(x) dx

)
= (R)

∫ b

a

(
lim
n→∞

fn(x)
)
dx = (R)

∫ b

a

f(x) dx

(see Theorem 8-3 of the Riemann-Lebesgue Theorem handout). The next proposi-

tion shows that a similar result holds for Class 1 functions and Lebesgue integration.

https://faculty.etsu.edu/gardnerr/5210/Riemann-Lebesgue-Theorem.pdf
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Proposition 4.8. Let {fn} be a sequence of bounded measurable functions on a

set of finite measure on E. If {fn} → f uniformly on E, then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
=

∫
E

f.

Note. We are interested in general in when
∫

E f =
∫

E(lim fn) = lim(
∫

E fn) for

a sequence {fn} of measurable functions on set E which converges to measurable

function f pointwise on E. When this result holds, we have a “convergence the-

orem.” We will have three such results, one for each of Class 1, Class 2, and

Class 3 of functions. The next note shows that for Class 1 functions we need some

additional hypothesis on the sequence {fn}.

Note 4.2.A. Define fn on [0, 1] as:

fn(x) =

 0 if x = 0 or x ∈ [1/n, 1]

n if x ∈ (0, 1/n).

Then fn → f ≡ 0 (pointwise but not uniformly) and

∫
[0,1]

fn = 1 for all n ∈ N.

However,

lim
n→∞

(∫
[0,1]

fn

)
= 1 6=

∫
[0,1]

(
lim
n→∞

fn

)
=

∫
[0,1]

0 = 0.
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Note. To prove our first convergence theorem, we need Egoroff’s Theorem:

Egoroff’s Theorem. Assume E has finite measure. Let {fn} be a

sequence of measurable functions on E that converges pointwise on E

to real-valued function f . Then for every ε > 0, there is a closed set

F ⊂ E for which {fn} → f uniformly on F and m(E \ F ) < ε.

See 3.3. Littlewood’s Three Principles, Egoroff’s Theorem, and Lusin’s Theorem.

Note. To deal with the example given in Note 4.2.A, we impose a condition of

“uniform pointwise boundedness” which insures that each function in the sequence

{fn} is bounded by the same constant. Notice that this is not the case for the

example given in Note 4.2.A.

Bounded Convergence Theorem.

Let {fn} be a sequence of measurable functions on a set of finite measure E.

Suppose {fn} is uniformly pointwise bounded on E, that is, there is a number

M ≥ 0 for which |fn| ≤M on E for all n. If {fn} → f pointwise on E, then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
=

∫
E

f.
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