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Section 4.3. The Lebesgue Integral of a

Measurable Nonnegative Function

Note. In this section we drop the restrictions of boundedness, but only consider

nonnegative (possibly extended real number valued) functions; that is, we consider

my so-called “Class 2” functions. Since we have lost boundedness, we may have

integrals which are infinite. Notice in this class we have no concerns over ∞−∞

computations since everything with which we compute (namely function values and

measures of sets) is nonnegative.

Definition. A measurable function f on set E is of finite support if there is

E0 ⊂ E for which m(E0) < ∞ and f ≡ 0 on E \ E0. The support of f is the set

{x ∈ E | f(x) 6= 0}.

Note. In Class 1, which we considered in the previous section, everything with

which we compute (namely function values and measures of sets) is bounded. We

first drop the condition on the finiteness of the measure of a set over which we

integrate, but we impose a condition of boundedness and finite support. This

allows us to consider certain Class 2 functions which are effectively in Class 1. To

be formal, we have to define the integral of such functions separately and we do so

now.
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Definition. Let f be a bounded measurable function on E which has finite sup-

port, say f ≡ 0 on E \ E0 and m(E0) < ∞. Define
∫

E f =
∫

E0
f .

Note. In Problem 4.18 you are asked to verify that the previous definition is

“proper” (i.e., the integral is well-defined). That is, the definition is independent

of the choice of set E0 of finite measure.

Note. We now define the integral of Class 2 functions (i.e., nonnegative functions)

in terms of Class 1 functions (or, at least, in terms of functions which are effectively

in Class 1).

Definition. For f a nonnegative measurable function on E, we define the integral

of f over E as∫
E

f = sup{
∫

E h | h is bounded, measurable, of finite support, and 0 ≤ h ≤ f}.

Note. It might appear that, when integrating a function that is ∞ on a set of

measure 0, we are using some sort of idea that 0 · ∞ = 0. WE ARE NOT!!!

We have hidden any such problem in the stages of development leading to the

previous definition. Namely, in Problem 4.17 (which uses the previous definition

and Problem 4.9) it is to be shown that if f ≡ ∞ on E and m(E) = 0 then∫
E f = 0. Surprisingly, the 3rd edition of Royden’s Real Analysis states: “The

operation ∞ −∞ is left undefined, but we shall adopt the arbitrary convention

that 0 · ∞ = 0.” (See page 36 of the 3rd edition.) In the 4th edition, Royden and

Fitzpatrick deal with the arithmetic of extended real numbers on page 10—notice

there is no mention of 0 · ∞ nor ∞−∞ (since both are now left, appropriately,

undefined).
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Note. Another setting in which we might encounter a 0 · ∞ problem involves a

function f ≡ 0 on a set E of infinite measure. The previous definition gives us:

Lemma 4.3.A. If f ≡ 0 on measurable set E where m(E) = ∞, then∫
E f = 0.

This holds since the only bounded measurable functions h of finite support with

0 ≤ h ≤ f = 0 on E are the constant functions equal to 0 on measurable subsets

of E of finite measure. Since constant h ≡ 0 is a bounded nonnegative function of

finite support, we then have by the definition above that for each such h,
∫

E h = 0.

Hence
∫

E f = 0.

Note. Now if nonnegative function f defined on set E satisfies f = 0 a.e. on E,

then certainly
∫

E f = 0. We use the next result to show that the converse of this

observation also holds.

Chebychev’s Inequality.

Let f be a nonnegative measurable function on E. Then for any λ > 0,

m ({x ∈ E | f(x) ≥ λ}) ≤ 1

λ

∫
E

f.

Note. Chebychev’s Inequality is not surprising when we write

λ ·m ({x ∈ E | f(x) ≥ λ}) ≤
∫

E

f

and consider the following illustration:
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It allows us to prove the following.

Proposition 4.9. Let f be a nonnegative measurable function on set E. Then∫
E f = 0 if and only if f = 0 a.e. on E.

Note. Now for linearity and monotonicity for Class 2 functions. This is our third

(of four) such results.

Theorem 4.10. Linearity and Monotonicity of Integration.

Let f and g be nonnegative measurable functions on E. Then for any α > 0 and

β > 0, ∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g.

Moreover, if f ≤ g on E then
∫

E f ≤
∫

E g.

Note. Just as we had an additivity result for Class 1 functions (Corollary 4.6), we

have a similar result for Class 2 functions.
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Theorem 4.11. Additivity Over Domain of Integration.

Let f be a nonnegative measurable function on E. If A and B are disjoint measur-

able subsets of E, then ∫
A∪·B

f =

∫
A

f +

∫
B

f.

In particular, if E0 is a subset of E of measure zero, then
∫

E f =
∫

E\E0
f.

Note. We are interested in a convergence theorem for Class 2 functions (i.e.,

nonnegative functions), similar to the Bounded Convergence Theorem for Class 1

functions. The next result is a step in this direction.

Fatou’s Lemma. Let {fn} be a sequence of nonnegative measurable functions on

E. If {fn} → f pointwise a.e. on E, then∫
E

f =

∫
E

lim fn ≤ lim inf

(∫
E

fn

)
.

Note 4.3.A. See page 83 for two examples that show that the inequality in Fatou’s

Lemma can be strict. Here is another:

Define fn(x) = n · χ[−1/(2n),1/(2n)]. Then

∫
R

fn = n · 1

n
= 1 and

{fn} →

 0 if x 6= 0

∞ if x = 0,

so lim fn = f = 0 a.e. and
∫

R f = 0. That is∫
R

f = 0 < 1 = lim
n→∞

(∫
R

fn

)
= lim inf

(∫
R

fn

)
.

The graphs of some of these functions are:
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The fact that the integral of each fn is 1 suggests that this example could have

relevance for probability distributions. For a further discussion of this, see my

supplement on The Dirac Delta Function, A Cautionary Tale.

Note. Fatou’s Lemma is sort of “half” of a convergence theorem in the sense that

it relates
∫

E lim fn to lim inf
∫

E fn, where fn → f a.e. on E. We can still draw

a certain conclusion for any sequence of nonnegative measurable functions on E,

not just an a.e. convergent sequence. This is addressed in the Generalized Fatou’s

Lemma, a proof of which is required in Problem 4.27:

Generalized Fatou’s Lemma. If {fn} is a sequence of nonnegative

measurable functions on E, then∫
E

lim inf fn ≤ lim inf

∫
E

fn.

Note. We see from the example given in Note 4.3.A that we need some extra

conditions beyond pointwise converge to get a convergence theorem for Class 2

functions. With monotonicity in the sequence of functions and Fatou’s Lemma, we

can prove the following.

https://faculty.etsu.edu/gardnerr/5210/notes/Dirac-Delta.pdf
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Monotone Convergence Theorem. Let {fn} be an increasing sequence of non-

negative measurable functions on E. If {fn} → f pointwise a.e. on E, then

lim
n→∞

(∫
E

fn

)
=

∫
E

(
lim
n→∞

fn

)
=

∫
E

f.

Note. The Monotone Convergence Theorem allows us to deal with the integral of

a series of nonnegative measurable functions which converge in terms of a series of

integrals.

Corollary 4.12. Let {un} be a sequence of nonnegative measurable functions on

E. If f =
∞∑

n=1

un pointwise a.e. on E, then

∫
E

f =
∞∑

n=1

(∫
E

un

)
.

Note. The next definition is used when we consider in the next section our last

class of functions. The term “integrable” is being used in a somewhat different way

here. In the past we have used this term in connection with the existence of an

integral (usually in terms of the equality of upper and lower integrals) and not in

connection with the finiteness of the value of the integral. This finiteness will be

used in the next section to avoid an ∞−∞ situation when we allow functions to

be both unbounded and negative.
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Definition. A nonnegative measurable function f on a measurable set E is said

to be integrable over E provided
∫

E f < ∞.

Note. Not surprisingly the integrability of f implies some type of finiteness of f ,

as given next.

Proposition 4.13. Let nonnegative f be integrable over E. Then f is finite a.e.

on E.

Note. Finally, we consider a convergent sequence of functions on which we impose

a uniform boundedness on the integrals themselves of the functions in this sequence.

This result also deserves to be considered a “convergence theorem.”

Beppo Levi’s Lemma. Let {fn} be an increasing sequence of nonnegative mea-

surable functions on E. If the sequence {
∫

E fn} is bounded, then {fn} converges

pointwise on E to a measurable function f that is finite a.e. on E and

lim
n→∞

(∫
E

fn

)
=

∫
E

f < ∞.
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